
OVERCOMING THE FONT AND SCRIPT BARRIERS AMONG INDIAN

LANGUAGES

Master of Science (by Research)

in Computer Science

Himanshu Garg

200207004

International Institute of Information Technology

Hyderabad India

March 2006

 ii

OVERCOMING THE FONT AND SCRIPT BARRIERS AMONG INDIAN

LANGUAGES

International Institute of Information Technology, Hyderabad

March

2006

A Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science (by Research)

in

Computer Science

by

Himanshu Garg

200207004

himanshu@students.iiit.ac.in

 iii

 iv

Copyright © 2006, Himanshu Garg

 v

 vi

CERTIFICATE

It is certified that the work contained in this thesis, titled “Overcoming the

Font and Script Barriers among Indian Languages” by Himanshu Garg, has been

carried out under my supervision and is not submitted elsewhere for a degree.

___________ ____________________

Date Advisor: Amba Kulkarni

 vii

To Ambaji

 viii

The current status of Indian languages on the web may best be described as

“Diversity in Unity”! All Indian language scripts (except for Urdu & Sindhi) are

derived from the same Brahmi Script and also share a common alphabet to a large

extent. But languages like Hindustani, Sindhi use different scripts making the texts

available in one script inaccessible to persons not knowing that script. Because of

different scripts for different Indian languages, which otherwise share common

culture, two languages can’t share language independent information with each

other. When it comes to electronic media, the situation is still worse. Even the texts

in the same language are font dependent making them unsharable. Though

standards exist they are not followed!

In this thesis we propose solutions

• to overcome the font barrier within a language for all brahmi based

scripts.

• to overcome the script barriers across the language among all brahmi

based scripts

• to overcome the script barrier in case of Hindustani-Hindi-Urdu

The problem of font barriers within a language is because of different

coding schemes followed by different font designers. While a standard coding

scheme (Unicode/ISCII) exists, it is not used. Converters that can convert from the

unknown encoding to ISCII can largely solve the problem. However manually

coding converters is difficult and time consuming. This thesis attempts to tackle

the problem of generating such converters, using two different approaches. The

first approach uses a mnemonic based description of glyphs in the font. This

description is used to convert a font encoded text. Accuracies of above 75% for

two Telugu fonts and above 90% for three Devanaagari fonts have been obtained.

The second approach uses example based machine learning techniques to generate

Finite State Transducers. These Finite State Transducers can be automatically

ABSTRACT

 ix

learnt from syllable mappings of font encoded text to Unicode text. Accuracy of

above 90% has been obtained when 1000 syllable mappings from font encoding to

Unicode were provided.

The second problem of overcoming the script barriers across the languages

may simply be solved by following the ISCII standard.

The transliteration from Urdu to Hindi makes a text written in the Perso –

Arabic script accessible to those who know the Devanaagari script. Such a

transliteration is non trivial because there is not a one to one mapping between

Urdu and Hindi alphabets. Omission of vowel signs in Urdu which must be present

in Hindi complicates the issue further. We discuss these and other issues involved

in overcoming the script barriers in case of Urdu - Hindi and propose a solution to

overcome this barrier.

 x

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. XVII

CHAPTER 1 INTRODUCTION... 1

1.1 MOTIVATION .. 1

1.2 BACKGROUND .. 7

1.2.1 Script Types... 7

1.2.2 Nature of Indian Scripts... 8

1.2.3 Salient Features of Syllabic Scripts 8

1.2.4 Standards for Indian Scripts.. 9

1.2.4.1 ISCII... 9

1.2.4.2 UNICODE ... 10

1.2.4.3 ISFOC .. 10

1.2.4.4 Others... 10

1.2.5 Font Formats for Indian Scripts.. 11

1.2.5.1 TTF... 11

1.2.5.2 The Need for Font Converters..................................... 12

1.2.5.3 OTF .. 14

1.3 FORMAL DEFINITION .. 15

1.4 ORGANIZATION OF THE REPORT 18

CHAPTER 2 RELATED WORK ... 19

2.1 TOOLS.. 20

2.1.1 STED .. 20

2.1.2 SILConverters ... 20

2.1.3 ICU ... 21

2.1.4 TECkit.. 22

2.1.5 ISCIIG/ICONVERTER [13].. 23

 xi

2.1.6 Padma... 24

2.1.7 Font Converters at the Language Technologies Research

Centre, IIIT, Hyderabad ... 25

2.2 APPROACHES FOR AUTOMATIC GENERATION OF

CONVERTERS .. 26

2.3 TRANSLITERATION ATTEMPTS BETWEEN URDU AND

DEVANAAGARI.. 27

CHAPTER 3 PROPOSED SOLUTIONS .. 29

3.1 GLYPH GRAMMAR BASED APPROACH............................ 30

3.1.1 Background ... 30

3.1.2 Language for Description of Glyphs 32

3.1.2.1 All Glyphs Except Those of Below/Post Base Forms of

Consonants and Except a Few Others 32

3.1.2.2 Glyphs of Below-Base Forms of Consonants.............. 34

3.1.2.3 Glyphs that are Logical Units...................................... 34

3.1.2.4 Combination of Logical Unit and a Glyph 35

3.1.2.5 Special Cases ... 35

3.1.3 The Font Glyph Description Table...................................... 37

3.1.4 The Algorithm to Convert a Font Encoded Text to ISCII 38

3.2 MACHINE LEARNING APPROACH 46

3.2.1 Problems with the Previous Approach: 46

3.2.2 Machine Learning Techniques .. 46

3.2.3 Using Machine Learning Techniques for Generation of

Converters... 49

3.2.4 Minimum Unit for Translation.. 50

3.2.5 Definitions.. 50

3.2.6 An Example to Illustrate the Original Algorithm.............. 51

3.2.7 Modification in the Original Algorithm to Prevent

Overgeneralization... 56

CHAPTER 4 URDU – HINDI ACCESSOR .. 58

4.1 INTRODUCTION ... 58

4.2 BUILDING A URDU-HINDI ACCESSOR............................... 59

 xii

4.3 SAMPLE OUTPUT... 62

4.4 FUTURE WORK... 65

CHAPTER 5 RESULTS .. 66

5.1 GLYPH GRAMMAR BASED APPROACH............................ 66

5.1.1 Drawbacks of the Glyph Grammar Based Approach 67

5.1.2 Possible Improvements... 67

5.2 THE MACHINE LEARNING APPROACH............................ 68

5.2.1 Drawbacks ... 69

5.2.2 Possible Improvements... 70

5.3 RESOURCE REQUIREMENTS WITH DIFFERENT

APPROACHES... 70

APPENDIX A.. 72

APPENDIX B .. 74

APPENDIX C.. 76

BIBLIOGRAPHY... 77

 xiii

 LIST OF TABLES

Table 1 Same word, different fonts... 2

Table 2 Different fonts, same underlying numeric codes ... 2

Table 3 Same word, different fonts, different codes... 3

Table 4 Same word, same font, different codes.. 3

Table 5 A word written using a standard encoding scheme called Unicode 4

Table 6 Syllables and their constituent consonants and vowels 8

Table 7 The ISCII standard assigns same code to the same character in 10 Indian

languages... 10

Table 8 Conversion done by an earlier grammar based system.............................. 27

Table 9 A syllable’s shape is formed from smaller glyphs joining together 30

Table 10 Glyphs in an input word and their possible meanings. 41

Table 11 Mnemonic based description of glyphs that appear in the example word.

... 43

Table 12 Mnemonics whose companions exist within the example word.............. 43

Table 13 Examples for training used by OSTIA .. 52

Table 14 Examples of incorrect translations done with the original algorithm...... 56

Table 15 Mapping of multiple “ja” sounds of urdu to a single “ja” sound in

Devanaagari .. 60

Table 16 Filter to convert non aspirated consonants with ‘ha’ to aspirated 61

Table 17 Words without vowel signs in Urdu are translated to words with vowel

signs .. 62

Table 18 Local word grouping to combine multiple Urdu words into a single Hindi

word. ... 62

 xiv

Table 19 Conversion of texts when 1000 syllables from a representative sample

text are taken ... 68

Table 20 Platform, time, training etc. required for font conversion with different

approaches... 70

 xv

LIST OF FIGURES

Figure 1 Conversion of a text in non standard encoding to a standard one and

subsequent uses. .. 5

Figure 2 Abstraction of how display of a text file takes place using TTF's 12

Figure 3 Workaround to TTF's limitation used by Indian Linux and ILeap........... 13

Figure 4 Display of Unicode text using an OpenType font and an associated

display program .. 14

Figure 5 Potential resources available to a sytem that has to determine conversion

rules... 16

Figure 6 The formation of a syllable in Devanaagari or Telugu script (Can be

extended with minor modifications to other Brahmi based Indian scripts). The

REPH is treated as a special case and is not included here. 31

Figure 7 The syntax of mnemonics to be used for describing glyphs. ‘&’, ‘{‘, ‘}’,

‘@’, ‘;’ are separators used to identify mnemonics and parts within mnemonics.. 34

Figure 8 block diagram showing conversion using the glyph description table..... 40

Figure 9 The finite state transducer learnt from 10 example phrases of Spanish to

English translation. ... 49

Figure 10 Block diagram of the system that is trained from examples: 51

Figure 11 Tree Subsequential Transducer built directly from examples using

algorithm MakeTST given in page 72. Final states have darker boundaries. ‘/’ is

used to separate input from output. ‘φ‘ is the null string. λ is the empty string. 52

Figure 12 Onward Tree Subsequential Transducer built from Tree Subsequential

Transducer using algorithm MakeOTST given in Appendix. The longest common

prefixes of the output strings have been moved level by level from the final states

 xvi

towards the root. The transducer translates all and only the examples given in input

and no other... 53

Figure 13 State 1 is being merged into state 0. ... 54

Figure 14 State 1 is being merged into state 0. To make the arcs with the same

input symbol, have the same output strings the longest common prefix of the

output string is retained and the rest is pushed back. To keep the Transducer

deterministic, i.e. only one outgoing arc with a given input symbol, states 3 and 6

also will be merged. .. 54

Figure 15 The merging of 0 and 1 is now complete, as a result of merging of 6 into

3. The transducer still converts the examples correctly. However, it has now learnt

(incorrectly) how to convert the glyph M into the ISCII code for µ. It should

have learnt the ISCII code for µ Ùè. .. 55

Figure 16 The final transducer obtained as a result of merging all possible states.

Looking only at the arcs we see that overgeneralization has taken place, even

though the examples are still converted correctly... 55

Figure 17 The final transducer obtained as a result of merging all possible "final"

states. The algorithm has correctly learnt vowel signs as can be seen from the arc

from state 0 to itself .. 57

Figure 18 Stages in translation of an Urdu text to Devanaagari 59

Figure 19 Sample Urdu text taken from the BBC Urdu Website 62

Figure 20 Output of the sample text shown above ... 63

Figure 21 Screenshot of the output of the Urdu-Hindi Anusaaraka in a web browser

... 63

Figure 22 Results of the grammar based approach in Devanaagari and Telugu 67

Figure 23 Increase in the percentage conversion on new text with increasing

number of syllables. .. 69

 xvii

ACKNOWLEDGEMENTS

I can’t thank my advisor Ms. Amba Kulkarni enough but I still thank

for her guidance, patience and support during my thesis work. The

improvement in the OSTIA algorithm is largely due to discussions with Dr.

Vineet Chaitanya who helped identify the problems with the learning of the

original one. The work on Telugu was taken up on Dr. Rajeev Sangal’s

suggestion. Thanks are also due to Dr. Uma Maheshwar Rao who helped me

get started with the work on Telugu by discussing the issues and providing

relevant material. I am also grateful to the number of students at IIIT who

spared their time for me to help evaluate my programs for Telugu, a language

which was earlier ‘Greek’ to me. The thesis includes another language new to

me i.e. Urdu. The work on Urdu is largely due to impetus given by Prof.

Rahmat Yusuf Zai and Dr. M. S. Hayat who spent time with us in fixing the

transliteration. I am also grateful to so many others at the Akshar Bharti

group at LTRC whose programs and support I used so often during the thesis

work. Many improvements to the report were made after feedback from the

reviewers. I thank them for their time. I will also be thankful to my parents

and friends who pushed me for winding up my thesis work and submitting

this report. Without their push and help, this report might never have been

written and the work would never have reached the stage it has.

 1

CHAPTER 1

INTRODUCTION

There has been a chaos as far as Indian languages in electronic form are

concerned. Neither can one exchange the notes in Indian languages as conveniently

as in the English language, nor can one perform search on texts in Indian languages

available over the web. This is so because majority of the texts are being stored in

non standard formats. In this thesis we attempt to ease the conversion of Indian

language texts to standard formats. Additionally we also look at Hindi-Urdu

transliteration so that a person who knows the Devanaagari script can access Urdu

texts written in Perso-Arabic script.

The following sections provide the necessary introduction with section 1.1

giving the motivation for attempting this problem, section 1.2 giving the necessary

background to gain an understanding of issues involved in Indian language display,

section 1.3 provides a formal definition of the problem along with the different

kinds of inputs available to solve it. The report organization is given in section 1.4.

1.1 MOTIVATION

Text on the computer can be displayed in different styles. Each style

corresponds to a font. For example shown below is the word Hello written in four

commonly used fonts:-

 2

Font Arial Times New

Roman

Comic

Sans

Courier

New

Example

Word

Hello Hello Hello Hello

Table 1 Same word, different fonts

Each character that is displayed or stored in the computer has a distinct

numeric code used to distinguish it from other characters. Interestingly a character

of the English language has the same code irrespective of the font being used to

display it. For example ‘a’ has the same numerical code ‘97’ irrespective of the

font that is used to display it.

Consider for example the word “Hello” written in the Roman script:-

Font Arial Times New Roman

Word H e l l o H e l l o

Numeric code for

each character

72 101 108 108 111 72 101 108 108 111

Table 2 Different fonts, same underlying numeric codes

Two fonts whose names are Arial and Times New Roman are used to

display the same word. The underlying codes for the individual characters,

however, are the same and according to a standard called ASCII. Searching the

web for the word Hello returns the web pages containing the word Hello

irrespective of the font used to display it. This works because the underlying codes

used to store the word Hello are always the same.

On the other hand most fonts for Indian languages assign different codes to

the same character. Therefore when we consider Devanaagari fonts, the situation

changes:-

 3

Font Jagran Yogesh

Word ç × ‰ Ø

æ

 Ê ¨ É l ª

 É É

Underlying Code

for each byte

231 215 137 216

230

202 168 201 108 170

201 201

Table 3 Same word, different fonts, different codes

We will refer to the different shapes used by a font as glyphs. Examples are

H e l l o Ê ¨ É l ª . What must be noted is that for Indian

language fonts instead of characters, numeric codes exist for glyphs which

combine together to form larger units. Moreover the numeric codes for glyphs

(glyph codes) are not uniform across fonts. The code for É is 230 in one font and

201 in another. ¨É has a numeric code 215 in one font while two numeric codes 168

and 201 in another because the latter forms ¨É from two glyphs.

Font Jagran Jagran

Word ç × ‰ Ø

 æ

 ç ¨ æ ‰ Ä æ

 æ

Underlying

code

for each byte

231 215 137 216

230

231 144 230 137 212 230

230

Table 4 Same word, same font, different codes

Moreover same fonts can be used to write the word which looks the same

visually but uses another set of numeric codes.

 4

This causes little problem as long as the only use of the text is viewing it as

if it were on paper*. Problems arise when one tries to take advantage of its being in

the electronic format. For example with the existing search engines such as Google

someone trying to search the word Ê¨ÉlªÉÉ gets only those web pages that use the

same font as that used for searching and written using the same glyphs. Searches

done with Ê¨ÉlªÉÉ written in the Jagran font return only those results that contain the

word written in Jagran font. Searches done with Ê¨ÉlªÉÉ written in the Yogesh font

return only those results that contain the word in Yogesh font. This is one reason

why it is currently not possible to search Indian language texts on the web.

Standard schemes for assigning numeric codes to characters/glyphs exist

but they have not been followed. Unicode is an example of a standard encoding.

The following table shows the underlying codes for the characters forming the

word िम�या.

Word म ि◌ थ ◌् य ◌ा

Codes according to

standard coding scheme

092e 093f 0925 094d 092f 093e

Table 5 A word written using a standard encoding scheme called Unicode

Text in electronic format has many other important uses in Natural

Language Processing [1] including corpus building [2], conversion to speech etc.

each of which becomes difficult due to the non standard encoding. Each of these

now applications now requires the additional task of converting the text to a

standard encoding. We refer to programs that carry out this conversion as

converters.

* Problems also arise if the font used to write the text is not supported by the system on which it is
being read. This happens when the source of the text is different from the place where it is being
viewed. Conversion of text to a standard encoding again becomes useful here.

 5

Figure 1 Conversion of a text in non standard encoding to a standard one and subsequent

uses.

Sometimes applications requiring display of text can only do so by

converting it to a non standard encoding. This happens when display of a standard

encoded text directly is not supported by the system. Examples of such

applications include some word processors [12], programming environments [3].

Applications that require conversion of text to image for looking up images with

similar text [4] and for training Optical Character Recognition systems [5] also

require conversion from a standard encoding to a glyph based encoding. While the

solutions presented here (in particular see 3.2) can be adapted to creating such

converters also, the requirements in such applications are of much higher

conversion accuracy than is obtainable directly with the solutions proposed here.

The difficulty in writing converters from a non standard encoding to a

standard one arises for various reasons:-

� There are about 15000 distinct source strings that must be mapped to

target strings. Many mappings of these are many to one because of

multiple ways of writing the same word (See

� Table 4). Enumeration of these manually is difficult if not impossible.

• Sample data in source encoding is too little. Such a situation could arise

when an article written in non standard encoding needs to be converted

and the article is the only one that uses the particular non standard

encoding.

Text in
non

standard
encoding
(source)

e.g. many
web

pages

Text in
standard
encoding
(target)

e.g.
Unicode

Convert

Build Corpus

Convert to speech

Search

Read

 6

• The text that needs to be converted cannot be read because the only font

that can display it is unsupported by the system. This happens when one

visits a website on the internet that uses a font that cannot be installed

on the reader’s system.

• Even though the user may be able to read some specific text he/she may

not be able to display shapes arising from arbitrary glyph code

sequences. Such an ability could simplify the task of converter writing.

This happens especially when the document being viewed contains the

font embedded inside it. This allows the document to be viewed alright

but other texts cannot be viewed using the same font.

• The distinct shapes that appear in the font are known but the rules by

which these combine are unknown or hidden in a proprietary s/w. An

example of this is the ILeap s/w which displays Indian Language texts.

Converter programs then must be able to convert all glyph

combinations (See

• Table 4) .

This thesis attempts to reduce the difficulty in writing programs that do the

conversion from a non standard encoding to a standard one. The solutions

presented here become useful especially in the last two situations mentioned

above.

A second problem that has been attempted is related to the script barriers

across languages. India though is multilingual, shares a lot at the cultural level. Not

only the scriptures/epics such as Ramayana, Mahabharat, Bhagvadgita but also

festivals, names etc are common. This language independent information would be

unsharable had there been no common encoding scheme. Standards such as ISCII

and Unicode exist. Each has its positive and negative aspects. Unicode suffers

from the problem of using different codes for the same character in different

scripts, but is otherwise good because it covers most of the world’s languages.

Another encoding standard ISCII [7] doesn’t suffer from the problem but is not

universal. There is thus a necessity of a common encoding scheme even at the

 7

Unicode level. Until that happens, the intermediate solution is to build converters

among Unicodes for different languages.

There is a unique case politically motivated by the then British rulers – use

of different scripts for the same language Hindustani! Hindustani in the

Devanaagari script came to be referred as Hindi and that in the Perso-Arabic script

as Urdu.

1.2 BACKGROUND

1.2.1 Script Types

A script defines a distinctive and complete set of symbols used for the

written form of one or more languages. The scripts may be broadly classified into

the following classes:-

Pictorial: Chinese, Japanese and Korean have a pictorial script. In these languages

each concept corresponds to a picture or a combination of pictures. The basic

pictures are in tens of thousands in these languages. Since there were too many

symbols than could be accommodated in the conventional typewriter, an

innovative solution was found. Photo copying machine was invented to reproduce

the required shapes. On computers also naturally a keyboard driver was designed

to input the text in these languages.

Alphabetic: In this representation a unique symbol is assigned to consonants and

vowels. For example the word Indian composed of the symbols I, n, d, a. There is

no necessity of special display drivers and keyboard drivers since there is a one to

one mapping between characters and glyphs. The roman script is an example of

this class.

Syllabic: In this scheme there is a different “atomic” symbol for each syllable.

 8

Compositional Syllabic: In this scheme syllables are the basic unit in writing, but

they are made up of alphabetic sequences. Brahmi script and all Indian scripts

derived from it are examples of this class. A unique symbol is attached to each

syllable. However the syllables themselves are made up of alphabetic characters.

For example Ê¨ÉlªÉÉ is composed of two syllables Ê¨É and lªÉÉ. Syllables in the syllabic

notation are written in the order they are pronounced.

Syllable Constituent Consonants and Vowels

Ê¨É ¨ÉÂ <

lªÉÉ lÉÂ ªÉÂ +É

Eò EÂ +

¨É ¨ÉÂ +

±ÉÉ ±ÉÂ +É

Table 6 Syllables and their constituent consonants and vowels

1.2.2 Nature of Indian Scripts

There are two kinds of letters in an alphabet: consonants and vowels.

Consonants are those letters which cannot be pronounced without a surrounding

vowel eg. EÂ ¨ÉÂ ±ÉÂ ¨ÉÂ lÉÂ ªÉÂ. Vowels are those letters that can be pronounced

independently e.g. + +É <.

The brahmi script and brahmi based Indian language scripts are

compositional syllabic in nature. A syllable is defined as a series of one or more

consonants followed by a vowel. Some examples of syllables are lªÉÉ Ê¨É Eò ±ÉÉ.

1.2.3 Salient Features of Syllabic Scripts

The sequence of consonants is indicated either by writing them from top to

bottom as in the case of ÈýÁ, Ù̂ or from left to right ÈÁä, M´ÉÉ .Telugu prefers top to

 9

bottom whereas in Devanagari we find both usages, though left to right is more

prominent.

The vowel + (a) is part of the consonant, so e.g. E (ka) stands for EÂ (pure

consonant k) followed by + (a).

Since vowel + is inbuilt, a concept of ‘matras’ is introduced in our scripts.

The relation between a vowel and its matra is discussed in [6]. For example the

relation between < and Ê is < = + + Ê or Â + < = Ê as in ¨ÉÂ + < = Ê¨É

The position of matra has nothing to do with its pronunciation order. The

order of pronunciation is strictly governed by definition by a syllable and hence

vowels are to be pronounced at the end, irrespective of their position at the script

level.

1.2.4 Standards for Indian Scripts

Standards that took the nature of Indian scripts into account were

prescribed but were never followed. Here we give a brief description of the

standards and the possible long term solution.

1.2.4.1 ISCII

 For Indian languages already the standard exists in terms of ISCII [7]. This

standard specifies codes for characters in the Indian language alphabet. Since all

Brahmi based Indian scripts share the same alphabet the code it assigns to a

character is same across all of them.

 10

ISCII Code Devanaagari Telugu

179 क క

180 ख ఖ

181 ग గ

182 घ ఘ

Table 7 The ISCII standard assigns same code to the same character in 10 Indian languages

1.2.4.2 UNICODE

Unicode is an international standard that assigns codes to all the world’s

languages. As a result different languages can coexist in the same document

without any additional markup. It is becoming increasingly popular due to its

global nature. Critiques can be found in [8] [9] and an alternative in [10]

1.2.4.3 ISFOC

CDAC proposed a glyph level standardization ISFOC [11] and a custom

keyboard driver called Inscript. This was proposed so that there was uniformity in

the glyph encodings. However this was not followed and fonts using their own

glyph encoding schemes continued to be used.

1.2.4.4 Others

There are others which cannot really be called standards but are mentioned

here because they are used to store Indian language texts. These include itrans,

omtrans, wx, etc. These are notations that use symbols from the roman script to

 11

store Indian language characters. Their importance arises from the fact that they

use the roman notation which can be viewed almost everywhere. There is no

dependence on availability of fonts, conversion to a glyph encoding etc.

1.2.5 Font Formats for Indian Scripts

Various font formats exist for displaying scripts. We will discuss the TTF

and OTF formats which are the prominent ones. A font encodes the glyphs that

will be displayed by it and codes that will be displayed using one or more of these

glyphs.

1.2.5.1 TTF

TTF or the True Type Font format has been used for the Roman script. Its

only shortcoming is that it can map a numeric code to only one glyph. Due to its

widespread support the same was adopted for Indian languages. While this worked

well for roman script where there is a one to one correspondence between a

character and its shape for complex scripts such as Indian this required the use of

glyphs that combine to form different syllables.

 12

Figure 2 Abstraction of how display of a text file takes place using TTF's

1.2.5.2 The Need for Font Converters

The font developers did not follow the ISCII/Unicode standards because

they require a program (keyboard driver) to map keystrokes to character codes and

a sophisticated program (rendering engine) to map one or more character codes to

one or more glyph codes (In TTF we can do only one code to one glyph mapping).

The operating system did not support the sophisticated rendering engine (until

Windows 2000 and GNU/Linux a little later). Applications that did follow it had to

have their own keyboard drivers and rendering engines [12]. Some of those who

did not follow the standard used ad hoc solutions in order to avoid the display

driver and keyboard driver problem. The font glyph mappings and/or the design of

fonts was governed by factors such as

a) Familiarity with the keyboard (e.g. Kruti Dev font)

b) Ease of use of the keyboard (e.g. Shusha)

c) Aesthetic considerations (e.g. Yogesh)

203

106

107

201

204

206

182

123

122

121

Display Program

203 = s

204 = m

121 = a

Glyph
encoded
text file

 13

Figure 3 Workaround to TTF's limitation used by Indian Linux and ILeap

Language processing applications that work with the older True Type fonts

store and process the text in a glyph-based representation. Alternatively the storage

is done in a standard encoding and for viewing it is converted to a font encoding

(See Figure 3). We therefore see the need for conversion to a font encoding to

display a standard encoded file.

Problems arise when the font encoded file created for display is transferred

to other locations. If the font is not supported at the destination the file cannot be

read. Even if the font is supported it is difficult to process the file because it is

glyph encoded. Indian Linux [13] does not suffer from this problem because the

conversion process is transparent to the user and it is not possible for the user to

transfer a font encoded file. The problem with it is however that it works with

some (now older) versions of the GNU/Linux operating system.

201

204

206

Display Program

203 = s

204 = m

121 = a

ISCII
Encoded
text file

203

106

107

201

204

206

182

123

122

Glyph
Codes

C

O

N

V

E

R

T

E

R

 14

1.2.5.3 OTF

Figure 4 Display of Unicode text using an OpenType font and an associated display program

The OTF or the OpenType Font format overcomes the problems associated

with TTF by also encoding the character code to glyph conversion rules within the

font. The TTF fonts which had space only for 256 bytes are now being replaced by

Open Type fonts which have no such limitation. Moreover TTF fonts had no

provision to state the glyph grammar rules. Open Type fonts make it possible to

specify the glyph grammar within the font. This glyph grammar gives the mapping

of the character codes to glyphs. The rendering engine then uses this information to

map character code sequences to appropriate glyphs.

The Open Type font format solves this problem by forcing the font

developer to make the character(s) to glyph(s) mapping explicit within the font

itself. Codes which were assigned to glyphs in the TrueType fonts are no longer

assigned by the font developer. His/Her task is to map the standard Unicode

character codes to glyphs thereby eliminating the problem due to font dependent

glyphs and glyph codes. The glyphs that are used to display different syllables are

all internal to the Open Type font.

Applications such as text editors, word processors that work on platforms

that use the OpenType font format don’t have to do the conversion from character

based representation to a glyph based representation. The conversion is done

automatically by the rendering engine using the OpenType font.

Display Program

\u0928 + \u093f = ina

\u092e + \u094d + \u092a = mp

Unicode
text

0928 093f
0928
093f

092e 094d
092e
094d

092e 094d
092a
092e
094d
092a

 15

So the long term solution is to follow the Unicode standard for storing and

processing texts and using Open Type fonts for displaying them†. Shifting to

Unicode from the font based encodings will take some time. Till then we should

have some short term solutions. Moreover we also need solutions to convert the

existing texts in Indian languages in proprietary fonts to Unicode.

1.3 FORMAL DEFINITION

Given a language LG (the language of Glyphs) consisting of about 200

symbols. Each symbol has an associated numeric code and a distinct shape called

glyph and an associated position in which it is displayed. Examples of such a

language include a font with its glyphs. This language is used to display a natural

language.

Given another language LC (the language of Characters) consisting of about

150 symbols. Each symbol has an associated numeric code and a name. A symbol

in isolation has a shape which is different from the shape when it appears with

other symbols. A number of symbols combine to form a distinct visual unit called a

syllable. Examples of such a notation include the ISCII and Unicode standards.

This language is used to store/process natural language texts.

Each language contains potentially infinite number of valid strings.

However since both are used to display/store natural languages the number of

strings that cover more than 99% of a natural language is limited to between 10000

and 15000.

One or more than one strings in LG can be used to display a given string in

LC. The task is to identify the 10000 or so strings in LG and their corresponding

† There still are issues with UTF-8 with respect to Indian languages, however these being beyond the
scope of this thesis, are not discussed here.

 16

equivalents in LC. Alternatively rules that can be used to convert LG strings to LC

strings can also be identified.

Figure 5 Potential resources available to a sytem that has to determine conversion rules

The task is to determine the rules of conversion of strings in LG to strings in

LG. Different inputs are available to a system that wants to figure out the

conversion rules from LG to LC. These include the following in the increasing order

of difficulty for a system that has to automatically identify the rules:-

1. Ability to convert arbitrary strings from LC to LG. Such ability allows us to

get LG equivalents of all strings available in LC. These mappings can then be

used to convert from LC to LG. Problems arise only when LG strings are written

in ways different from that generated by the system.

2. Installed Font or ability to display arbitrary text. Such ability allows the

user to generate the visual representation of all strings in LG and see

automatically or manually whether it has LG equivalents. This approach was

identified during a group discussion by Dr. C. V. Jawahar of IIIT, Hyderabad.

3. List of LG symbols. A table of all the symbols is available that lists all the

glyphs with their numeric codes. This can then be used to write rules manually

to convert from LG to LC.

LG LC Convert

Conversion
Rules

Corpora
of LG, LC

Parallel list
of Syllables

Parallel
Corpus of

LG, LC

List of LG

symbols

Ability to
display arbitrary

text

System Small
Parallel text

Non Viewable
sample page of LG

Language
Model

Ability to convert
arbitrary strings from
LC to LG

 17

4. Parallel list of Syllables. A list of syllables in LC and LG is available. Since

syllables are the basic unit of shaping this input contains more information than

a parallel list of words. This input can then be used to train an example based

learning system.

5. Parallel corpus of LG, LC. Similar to 4 above.

6. Small parallel text. Although the reader can view the text he/she cannot select

text to create a list of LG symbols..

7. Corpora of LG, LC These can be used to create LG and LC models. To what

extent are the models useful to convert LG texts to LC is unknown to the author.

8. Non viewable sample page of LG. Example of this include texts where the

font used to display the text is unavailable. All that the user has is numeric

codes that represent some unknown text.

Sometimes more than one of the above may be available. The above

ordering assumes only one resource is available at a time.

When looked at from a Machine Learning perspective one must identify the

version space [14] for this problem. A hypothesis for this problem is a set of

mappings from LC strings to LG strings. Assuming each string is no more than 5

glyphs there are 200 such strings possible from 200 or so glyphs. Strings in LC

may or may not map to one of 15000 or so commonly occurring syllables.

Therefore if the training examples are denoted by D the size of version space can

be bounded from above by the following

|V| = (2005 - |D|) * 15000

The thesis attempts to solve the problem when only 3 or 4 are available.

One approach works when 3 is available; the other when only 4 is available.

 18

1.4 ORGANIZATION OF THE REPORT

In the Second chapter we look at related work in this area. The Third

chapter discusses two solutions – glyph grammar based and Machine Learning

based – to develop the font converters automatically. The Fourth chapter suggests a

solution to reduce the script barrier among Urdu-Hindi. The Fifth chapter discusses

the results.

 19

CHAPTER 2

RELATED WORK

The problem of glyph based encodings is not unique to Indian scripts.

Indian scripts are examples of complex scripts mainly because there is not a one to

one correspondence between characters and their shapes. Other complex scripts

include [15]:-

Arabic

Hangul (Korea)

Hebrew (Israel)

Khmer (Cambodia)

Lao (Laos)

Syriac (Syria, Turkey)

Thaana (Maldives)

Thai (Thailand)

It is not unlikely that such issues exist for most of the above languages as

well. However the author is not aware of more than one attempt to automate the

process of creation of converters. This could be due to different reasons including

the limited number of encodings that need to be converted to standard for these

languages. The approach that perhaps all have taken is to program the few needed

converters by hand. For example see [16]. In the Indian context the problem is

large because of the number of scripts used and also the proprietary nature of

 20

converters. Font vendors / websites provide fonts but do not provide the rules by

which font encoded texts can be generated or decoded.

Tools exist for doing the conversion from one encoding to another in the

Indian context too. We mention in Section 2.1 tools aimed for encoding

conversion. Section 2.2 then mentions perhaps the only attempt at automatic

generation of converters.

2.1 TOOLS

2.1.1 STED [17]

Operating System/Platform: Any

Application Integration: None

Conversions Provided: User specified

The tool allows the user to specify rules for conversion from one encoding

to another. The rules can contain context information to specify the conditions

under which a conversion must be done. The four types of rules include:-

IS First Letter (in the word)

IS Last Letter (in the word)

IS Preceded By (symbol 1 is preceded by the selected symbol)

IS Followed By (symbol 1 is followed by selected symbol)

2.1.2 SILConverters [18]

Operating System/Platform: Windows

 21

Application Integration: Firefox

Conversions Provided:

Source Target Source Target Source Target

ISCII Unicode

Unicode ISCII

Annapurna
Shusha
CDAC-
ISFOC
IPA

Unicode

Itrans

Hindi
Unicode
Bengali
Unicode
Gujarati
Unicode
Telugu
Unicode
Tamil
Unicode
Kannada
Unicode
Oriya
Unicode
Malayalam
Unicode

Devpooja
Devpriya
DV-
TTYogesh
DVB-
TTYogesh
Sanskrit-98
Shusha
Mithi
DVBW-
TTYogesh
AkrutiDev1
Ankit
Devlys
Kruti46
Naidunia
Telugu-
Hemalatha
Telugu-
Hemalathab

ISCII

Devanaagari
Bengali
Gujarati
Gurmukhi
Kannada
Malayalam
Oriya
Tamil
Telugu

Latin

2.1.3 ICU [19]

Operating system/platform: Any

Application integration: NA

Programming language API: C [20]/C++ [21]/Java [22]

Source Target

ISCII Unicode

Unicode ISCII

 22

2.1.4 TECkit [23]

Operating System/Platform: Windows

Application Integration: Firefox

Conversions Provided: Same as SILConverters

This tool aims at providing encoding conversion facility and uses mapping

tables in a specific binary format. Information about the context in which a

conversion works can be specified in these mapping tables. For example the

following rules specify how glyphs codes for diacritic signs should be converted to

Unicode

0x40 > U+0301 ; acute over wide low characters

0xDB > U+0301 ; acute over narrow low characters

0x8F > U+0301 ; acute over wide tall characters

0x90 > U+0301 ; acute over narrow tall characters

and the following rule specifies how Unicode should be converted to the

appropriate diacritic sign depending upon the context:-

0x40 < U+0301 / [lowWide] _

0xDB < U+0301 / [lowNarr] _

0x8F < U+0301 / [highWide] _

0x90 < U+0301 / [highNarr] _

The first rule specifies that the Unicode codepoint U+0301 should be

converted to the glyph code 0x40 only when it is preceded by classes of characters

represented by lowWide. If it is preceded by codepoints of the class highWide

target glyph must be 0x8f and so on. More sophisticated notation can be used to

specify rules of reordering.

 23

2.1.5 ISCIIG/ICONVERTER [13]

Operating System/Platform: GNU/Linux

Application Integration: Netscape Navigator and others

Programming Language API: C/C++

Source Target

ISCII/Unicode

ISFOC Assamese
ISFOC Bangla
ISFOC Devanaagari
ISFOC Gujarati
ISFOC Kannada
ISFOC Malayalam
ISFOC Oriya
ISFOC Punjabi
ISFOC Telugu
ISFOC Tamil

ISCII Unicode
Unicode ISCII

It must be noted that the conversion is provided in one direction only i.e.

from ISCII/Unicode to glyph based encoding schemes.

The conversion rules are specified in encoding files containing rules of the

following kind

CONSONANT LMATRA -> G_LMATRA($2) $1;

The above rule specifies the I vowel sign movement in Devanaagari i.e. any

consonant (CONSONANT) followed by the I vowel sign (LMATRA) must be

converted to the glyph corresponding to the vowel sign (G_LMATRA($2))

followed by the glyph corresponding to CONSONANT ($1). These rules are read

by a yacc [24] based parser after which the necessary conversions are carried out.

 24

2.1.6 Padma [25]

Operating System/Platform: Any

Application Integration: Mozilla based applications including Firefox,

Thunderbird, Netscape Navigator etc.

Programming Language API: None

Source Target

Bhaskar (Devanaagari)
Chanakya (Devanaagari)
EPatrika (Devanaagari)
Jagran (Devanaagari)
Mithi (Devanaagari)
Subak (Devanaagari)
Amar Ujala (Devanaagari)
Gopika (Gujarati)
Nandi (Kannada)
Kairali (Malayalam)
Karthika (Malayalam)
Manorama (Malayalam)
Revathi (Malayalam)
Thoolika (Malayalam)
Kumudam (Tamil)
ShreeTam0802 (Tamil)
Vikatan (Tamil)
Eenadu (Telugu)
Hemalatha (Telugu)
ShreTel0900 (Telugu)
ShreeTel0902 (Telugu)
TCSMith (Telugu)
TeluguLipi (Telugu)
Tikkana (Telugu)
Vaartha (Telugu)

Unicode

Each converter is a JavaScript program which is packaged together as

extensions to the Mozilla based applications.

 25

2.1.7 Font Converters at the Language Technologies Research

Centre, IIIT, Hyderabad [26]

Operating System/Platform: GNU/Linux, Windows

Application Integration: None

Programming Language API: None

Source/Target Target/Source

Devpooja
Devpriya
DV-TTYogesh
DVB-TTYogesh
Sanskrit-98
Shusha
Mithi
DVBW-TTYogesh
AkrutiDev1
Ankit
Devlys
Kruti46
Naidunia
Telugu-Hemalatha
Telugu-Hemalathab

ISCII

These converters consist of mapping tables containing 10000 to 15000

entries each of which is a source to target mapping. Some entries from the DV-

TTYogesh to ISCII converter is shown below:-

…

D±É ISCII codes for D±É
DºÉÒ ISCII codes for DºÉÒ
EÂò ISCII codes for EÂò
EÄò ISCII codes for EÄò
…

These tables contain entries for the most commonly occurring syllables.

The converter program looks up these tables to find the target mappings.

 26

2.2 APPROACHES FOR AUTOMATIC GENERATION OF

CONVERTERS

An approach that automates the task of creating converters to a reasonable

extent has been described in [27]. It uses a page or two of parallel texts in font

encoding and the ISCII encoding as input. It then learns the correspondence

between glyph codes and ISCII characters. This program has possible glyph

grammars that facilitate the learning process. It can also use a glyph table if that is

available.

The author in an earlier study obtained experimental results with this

approach [28]. This system was tested on rediff.com’s hindi news articles (written

in Devanaagari script). 133 words were typed in ISCII for a news article written in

the Shree708 font. More equivalent ISCII text was produced using the converter

generated using these 133 words. For the new characters that appeared manual

corrections were made only to generate the input ISCII text. The results using the

grammar based approach are as follows:-

Name of font: Shree708

Size of test data: 11000 words

Text used: http://www.rediff.com’s news articles

 27

No of word-pairs in

training data

Extent of conversion by the

converter generated.

100 74%

200 77%

300 79%

400 79%

500 82%

600 83%

700 84%

800 84%

900 84%

1000 84%

Table 8 Conversion done by an earlier grammar based system

The system uses one grammar for all fonts of a given script but the

accuracy of the conversion from font encoding to ISCII depends upon the coverage

of the grammar. Moreover different grammars are required for different scripts.

We propose two new approaches that address these problems to some extent. The

first approach improves the accuracy for Devanaagari and Telugu without any

parallel text, and the second one provides a script independent solution for similar

accuracy.

2.3 TRANSLITERATION ATTEMPTS BETWEEN URDU AND

DEVANAAGARI

Attempts for the transliteration from Urdu to Devanaagari have been made

in [29] and [30]. The former uses a roman transliteration scheme to store the text

 28

and displays it in Devanaagari and Urdu. The latter is a commercial system from

CDAC, India.

Transliteration in the reverse direction i.e. from Devanaagari to Urdu has

also been attempted [31].

 29

CHAPTER 3

PROPOSED SOLUTIONS

The systems presented here use two different approaches to address the

problem of conversion from font encoding to ISCII/Unicode.

i) Glyph grammar based approach: Here description of each glyph in the font is

given using mnemonics. If a glyph has equivalent ISCII/Unicode characters the

equivalents are given. Otherwise, a mnemonic is used. Given the description of

glyphs using the notation, the system generates converters with an accuracy of over

90% within a span of two hours for the Devanaagari script. For Telugu converters

that convert with an accuracy of over 75% for Telugu can be generated over

duration longer than 2 hours. This time can be reduced if mnemonics are reused

from a font that contains similar glyphs. Some amount of manual editing is then

required to make corrections. Although some training is also required for the user

to learn the notation, this approach has an advantage that it requires little typing.

The information about glyphs can be obtained from a print out of the glyph table

and it is not necessary that the fonts be available on one's system.

ii) Machine Learning Approach: The second approach uses Finite State

Transducers that encode the correspondence between glyphs and equivalent

ISCII/Unicode characters. These can be automatically learnt from a parallel text.

The input to these is a parallel list of syllables. The advantage of this compared to

the previous approach is that little or no training is required to use the system. The

user has to merely give a equivalent ISCII/Unicode syllables for the glyph encoded

 30

ones. Moreover, unlike statistical machine learning approaches the model built by

the system is human readable.

3.1 GLYPH GRAMMAR BASED APPROACH

In this method mnemonics are used to list all the smallest possible logical

units that a glyph can be a part of. A logical unit is a glyph or a group of glyphs

combined, that can be encoded by the Unicode/ISCII encoding system. The glyph

 É in the Devanaagari script can be used to denote the vowel sign, part of

consonants/conjuncts (MÉ PÉ SÉ VÉ \É IÉ …) and vowels (+ +É +Éà +Éä +Éì) and also as a part

of other vowel signs (Éä Éè). While trying to convert the glyph code for É to

Unicode/ISCII one has to look at the context in which it is used. Without the

context it cannot be decided what the glyph É should be converted to. Similarly in

Telugu the glyph L is used not only as a vowel modifier but also as a part of the

consonant LRi. This problem is similar to the problem of word sense disambiguation.

The word ‘flies’ has a number of meanings but in a given context (e.g. the sparrow

flies.) it has only one. With this approach we give the different “senses” of a glyph

in different contexts. The user specifies the various logical units a glyph can be a

part of. The program uses the context to decide which logical unit the glyph along

with its neighbors gets converted to.

3.1.1 Background

As noted earlier (See section 2.3), Indian scripts are compositional syllabic

in nature. The older True Type Fonts compose a syllable from its constituent

glyphs e.g.

Devanaagari CE É = C E É ^Ù = ^ Ù M´ÉÉà = M ´ É É à Ê]ÂiÉ = Ê] Â iÉ

Telugu O_ = N S ä È íV = È í V g]* = g] * »T ò = » T ò

Table 9 A syllable’s shape is formed from smaller glyphs joining together

 31

For each glyph (about 200 or so) present in the font we must identify each

syllable it can be a part of. However the number of syllables that covers around

99% of the text is above 10,000 and such identification becomes cumbersome.

Since syllables have well defined ways of formation, the problem of identifying the

larger unit a glyph belongs to, gets reduced as we will see below.

Figure 6 The formation of a syllable in Devanaagari or Telugu script (Can be extended with

minor modifications to other Brahmi based Indian scripts). The REPH is treated as a special

case and is not included here.

A syllable can thus be broken down into the following parts:-

Vowel Signs.

Base: In Devanaagari the base is usually a consonant or a conjunct such as

(Á, À). In Telugu the base can also be a part of a consonant which combines with

vowel signs and other marks to form syllables e.g. N N N N glyph is the base in each of NR , NR , NR , NR ,

NS, NUP.NS, NUP.NS, NUP.NS, NUP.

Pre base forms of consonants: eg. ú in Telugu.

Pre Base form of
consonant

C

Vowel
Sign.

à

Below base form
of consonant

`

Base

`
Vowel
Sign.

 Éè

Vowe
l

Sign.

 Ù

Vowel
modifie

r

Ä

Vowel
modifie

r
(Telugu)

Vowel
Sign.

Ê

 32

Below-base forms of consonants: Consonants belonging to the ta class in

Devanaagari (] ` b f) require the consonant that follows them to appear in the

below base form. Almost all consonants in Telugu require the below-base form

(when a consonant follows another pure consonant).

Vowel Modifiers: #Æ #Ä in Devanaagari and L in Telugu.

As a result of the above decomposition of syllable, a glyph need not be

described as part of all possible syllables. We can now describe it as a part of one

of the above.

3.1.2 Language for Description of Glyphs

A notation is thus proposed for recording each glyph, so that it can be

converted to ISCII/Unicode. Different syntax is used for different categories of

glyphs. Each of them is discussed in the following sections.

3.1.2.1 All Glyphs Except Those of Below/Post Base Forms of

Consonants and Except a Few Others

Three pieces of information are stored along with each glyph:-

For each glyph we identify each logical unit it is a part of. So for N of the

Telugu script we specify that it is a part of any one of NRP NS NT NU ZNP ZNP[Z\NP N] N][N_. Note that

we have not included NRPW NRPV NRPW NRPV NRPW NRPV NRPW NRPV . This is because we need to record only the smallest

logical unit a glyph is a part of. NRP W V can be considered independent because each

has its own ISCII/Unicode equivalent.

Merely specifying the unit to which a glyph belongs is not sufficient.

Consider M and É of the Devanaagari script which are, amongst others, parts of MÉ.

 33

When the following glyph sequence occurs M É M É the program does not know

whether they are to be converted to one MÉ or two or four because all it knows is that

the glyphs are part of MÉ. The problem arises because it does not know how many

glyphs must be combined to make the complete unit. We must therefore also

specify the number of parts the logical unit has been broken into by the font. This

is also required to distinguish it from multiple decompositions (into different

number of glyphs) of the same logical unit.

Finally we also record with each glyph the position it goes in the whole.

This is required to distinguish one part from another. The name given to the

position can be anything, though it should preferably reflect the glyph’s position to

improve readability.

Here is an example. We have the following description for the glyph M

which can either be the left (L) part of µ of two parts (@2) or the half consonant µè.

i.e. &{L}µ@2|µè; ('|' is used to separate the alternatives.)

 34

We therefore arrive at the following notation for glyphs:-

Figure 7 The syntax of mnemonics to be used for describing glyphs. ‘&’, ‘{‘, ‘}’, ‘@’, ‘;’ are

separators used to identify mnemonics and parts within mnemonics

Except glyphs of below base form of consonants, we found that this

encodes all the necessary information for encoding glyphs for converting them to

ISCII/Unicode.

Glyph descriptions are specified in a Context Free Grammar [32] which is

read by a Java Cup [33] based parser.

3.1.2.2 Glyphs of Below-Base Forms of Consonants.

Glyphs of below/post base forms of consonants are described by

surrounding the consonant with angle brackets. For example ä is described as < NRP >.

The angle brackets are used to distinguish it from the regular/base form of the

consonant which in this case is NRP.

3.1.2.3 Glyphs that are Logical Units

If byte code 24 looks like Ë then it is recorded with Unicode for Ë. If the

glyph to be described is a syllable with more than one character then the Unicode

&{POSITION} WHOLE @ N;

The position or
name of the glyph.

The number of glyphs
that the unit has been

broken into.

The unit that the glyph is
a part of.

 35

codes of the characters that make up the syllable are given e.g. G that is composed

of ³ è Ï is described using Unicode codes for them.

3.1.2.4 Combination of Logical Unit and a Glyph

It may so happen that the glyph is a combination of glyphs that have ISCII

codes and glyphs which can only be described by mnemonics. In such cases the

glyphs are described by combining the descriptions of the logical unit and the

glyph, one after another. _ glyph of the vaartha [24] font can be described using

the mnemonics for å followed by the mnemonics for 7

3.1.2.5 Special Cases

The notation correctly and succinctly encodes majority of the glyphs

commonly found in fonts for Devanaagari and Telugu. To keep the encoding brief

some glyphs have to be given special consideration. A common characteristic of all

these special cases is that, the target encoding for the special glyphs does not

appear in the position where the glyph appears.

Telugu ú This is encoded as <PreBase-LRi>. The program then converts it to the

Unicode for LRi and moves it to its appropriate position in the target Unicode. For

example consider úORPQ. This gets converted to the Unicode for ORP followed by Unicode

for halant and finally Unicode for LRi.

Devanaagari Ê Encoded as < Ê >. Although this has a Unicode equivalent

describing it, using that will be incorrect. For example consider ÊE, converting it to

Unicode for Ê followed by Unicode for E would be incorrect. Describing it as < Ê >

allows the program to treat it as a special case and move it after the following

syllable, in the target encoding.

 36

Devanaagari Ç Encoded as <REPH>, because like Ê it doesn’t appear the position

required by the target encoding. The program takes care of the movement to the

appropriate position.

Incorporating these into the notation, without treating them as special cases,

is possible but at the cost of complicating the description of other glyphs. Since

such cases are few in number, we chose to treat them as special cases. For the

algorithm to work for other Brahmi based scripts other such cases may to be

considered specially.

It may also be noted that the notation is general enough to allow one to not

treat the above glyphs as special cases. However one would then have to include

the glyphs for these special cases in the logical units whose parts glyphs are

described to be. For example if Ê were not to be treated as a special case, both Ê and

E will have to be described also as being parts of ÊE. E would then be described

using not just its Unicode equivalent but also as &{RIGHT}ÊE @2;. The glyph Ê

would then have to be described as being part of all syllables containing the Ê sign.

This increases the alternative wholes a glyph can belong to and thus the special

treatment.

 37

3.1.3 The Font Glyph Description Table

Using the above notation a file of glyph codes and their description is

created. We refer to this file as the font glyph description table. It consists of two

columns - byte code and the description separated by a tab stop. Those glyphs that

are not marked at all are copied as they are to the output. Most of the fonts contain

a glyph for a space that is smaller than the normal space (used for marking word

boundaries). The entry for this "glyph" must contain only the code for the glyph.

The target is left blank. For example if the small space has code 92 a section of the

Font Glyph Description Table would look like:-

 .

 .

 .

 24 Ë

.

.

.

 57 &{L}µ@2|µè;

.

.

.

 92

 . .

.

.

Some characters can be grouped into classes and instead of specifying the

individual characters everywhere; the description could use the class codes. For

 38

example in Telugu the consonants that have a ‘talakattu’ and in which vowel signs

attach by replacing the ‘talakattu’ can be grouped into one class. Consider NR gR ¿R ²R »R

µR ©« LR Î« ª« aR which can be grouped into one class. Instead of giving the description

&{T}[NR ,gR ,¿R ,²R ,»R ,µR ,©« ,LR ,Î« ,ª« ,aR]@2; for R one could just write &{T}C1@2; where C1 is

defined to contain the string [NR ,gR ,¿R ,²R ,»R ,µR ,©« ,LR ,Î« ,ª« ,aR]. A preprocessor then replaces these

class codes by the constituent characters.

3.1.4 The Algorithm to Convert a Font Encoded Text to ISCII

Preprocessing: Replace the character class codes by the characters as defined by

the user.

Reduction of glyph “senses”: Remove those glyph senses for which the

complement glyphs are not found in neighboring positions.

Find all possible mnemonic sequences: Some glyphs may still have multiple

senses. Generate all possible mnemonic sequences that the sequence of glyphs can

form.

Combine mnemonics that form a logical unit: If all mnemonics in the word

combine to yield one or more logical units treat this mnemonic sequence as a valid

mnemonic sequence.

Use dictionary to disambiguate: Some glyphs such as © mssare problematic because

their logical unit cannot be determined from context alone. For example © can be

used to make ©«s or xqs. The difference lies in terms of:-

• which glyph of the identical looking glyphs (talakattu x in this case) is used

and

• the presence/absence of a small space. (in this case whether uses a small space

and talakattu or another talakattu)

 39

• Such information is difficult for the user to provide merely by looking at the

glyphs. For such cases where ambiguity remains, use dictionary.

Use map table to disambiguate: Sometimes the dictionary may not contain any of

the ambiguous words that a glyph sequence gets converted to or may contain more

than one of them. In such cases use the mappings of the glyphs successfully

disambiguated so far.

 40

Figure 8 block diagram showing conversion using the glyph description table

Glyph

description

Font encoded file

Split into words

Word

Exclude those glyphs that
don’t appear in the word

and those glyph senses for
which companion senses

All possible sequences of glyph
senses; each sequence represents

a possible target word.

Exclude more sequences
for which companions
don’t exist in a word.

Exclude more sequences
which are not according to

language model.

Exclude words
that do not appear

in corpus

Include words for which
all mappings found

earlier
Map
Table

Telugu
Corpus

Target encoded or
unconverted word

Log
File

Definition
of a

syllable

Tokenize

Parse

Internal
representation

 41

To illustrate the algorithm we will convert the word ¥AÅ4lÁê to Unicode. This

word is composed of the 7 glyphs ¥ A Å 4 l Á ê. The two talakattu’s have different

glyph codes and are thus different! For conversion to Unicode, each glyph that

exists in the font must be present in the font glyph description table (see 3.1.2.1).

The algorithm starts by converting each of these glyphs to their mnemonic

equivalents. The mnemonic equivalents are obtained from the font glyph

description table.

The

glyph

The logical units it can be a part of.

¥ x- -mnsV zmnsV {mnsV |mnsV }mnsV £mnsV \|mnsV |mnsVV |mnsW
xms zms {ms |ms }ms £ms \|ms
xmns zmns {mns |mns }mns £mns \|mns
ª«sV zmsV {msV ®ªsV ®ªs[V ª±sV \®ªsV ®ªsVVi ®ªsW
ª«s ªy zms {ms ®ªs ®ªs[ª¯ ª [̄ ª_ ª±s ®ª\
x¤¦¦¦ ¥¦¦¦ z¤¦¦¦ {¤¦¦¦ |¤¦¦¦ }¤¦¦¦ £¤¦¦¦ \|¤¦¦¦

A NRP gRi xmnsV ¿RÁ ¿³RÁ LRi&V hRi ²R¶ ²³R¶ »R½ ´R¶ µR¶ µ³R¶ ©«s xms xmns Ë³ÏÁ ª«sV Ŗ¶V LRi ÎÏÁ ª«s aRP xtsQ xqs x¤¦¦¦ ¥¦¦¦

Å V W
xmnsV xzmnsV {mnsV |mnsV }mnsV \|mnsV |mnsVV |mnsW £mnsV
LRi&V Lji&V Lki&V llLi&V lLi[&V \lLi&V lLi&VV lLi&W Lì&V
ª«sV zmsV {msV ®ªsV ®ªs[V \®ªsV ®ªsVV ®ªsW ª±sV
Ŗ¶V LiVV LiVW ¹¸¶V ¹¸¶[V \¹¸¶V ¹¸¶VV ¹¸¶W º̧¶V

4 ´R¶ ´y j́¶ ḱ¶ ®´¶ ®´¶[\®´¶ ´] ´][´_ ´¶̀
µR¶ µy µj¶ µk¶ ®µ¶ ®µ¶[\®µ¶ µ] µ][µ_ µ¶̀
µ³R¶ µ³y µ³j¶ µ³k¶ ®µ³¶ ®µ³¶[\®µ³¶ µ³] µ³][µ³_ µ³̀¶

L NRP gRi xmnsV ¿RÁ ¿³RÁ LRi&V hRi ²R¶ ²³R¶ »R½ ´R¶ µR¶ µ³R¶ ©«s xms xmns Ë³ÏÁ ª«sV Ŗ¶V LRi ÎÏÁ ª«s aRP xtsQ xqs x¤¦¦¦ ¥¦¦¦

. ´R¶ … and others that contain a dot at the bottom

ù < Ŗ¶V>

Table 10 Glyphs in an input word and their possible meanings.

This information is encoded by the font glyph description table as shown in

the following table:-

 42

Glyph The mnemonic based description of the glyph, to encode the

logical units it can be a part of.

¥ &{B}xmnsV@4;|&{B}zmnsV@4;|&{B}{mnsV@4;|&{B}|mnsV@4;|&{B}}mnsV@4;
|&{B}£mnsV@4;|&{B}\|mnsV@5;|&{B}|mnsVV@5;|&{B}|mnsW@5;
|&{B}xms@2;|&{B}zms@2;|&{B}{ms@2;|&{B}|ms@2;|&{B}}ms@2;|&{B}£ms@2;
|&{B}\|ms@3;
|&{B}xmns@3;|&{B}zmns@3;|&{B}{mns@3;|&{B}|mns@3;|&{B}}mns@3;|&{B}£mns@3;|
&{B}\|mns@4;
|&{B}ª«sV@3;|&{B}zmsV@3;|&{B}{msV@3;|&{B}®ªsV@3;|&{B}®ªs[V@3;|&{B}\®ªsV@
4;|&{B}®ªsVVi@4;|&{B}®ªsW@4;|&{B}ª±sV@3;
|&{B}ª«s@2;|&{B}ªy@2;|&{B}zms@3;|&{B}{ms@3;|&{B}®ªs@2;|&{B}®ªs[@2;|
&{B}®ª\ @3;|&{B}ª¯@2;|&{B}ª [̄@2;
|&{B}ª_@2;|&{B}ª±s@2;
|&{B}x¤¦¦¦@3;|&{B}¥¦¦¦@3;|&{B}z¤¦¦¦@3;|&{B}{¤¦¦¦@3;|&{B}|¤¦¦¦@3;|&{B}}¤¦¦¦
@3;|&{B}£¤¦¦¦@3;|&{B}\|¤¦¦¦@4;

A &{T}NRP@2;|&{T}gRi@2;|&{T}xmnsV@4;|&{T}¿RÁ@2;|&{T}¿³RÁ@3;|&{T}LRi&V@5;|&{T}hRi
@3;|&{T}²R¶@2;|&{T}²³R¶@3;

|&{T}»R½@2;|&{T}´R¶@4;|&{T}µR¶@2;|&{T}µ³R¶@3;|&{T}©«s@2;|&{T}xms@2;|&{T}xmns@
3;|&{T}Ë³ÏÁ @3;|&{T}ª«sV@3;

|&{T} Ŗ¶V@4;|&{T}LRi@2;|&{T}ÎÏÁ@2;|&{T}ª«s@2;|&{T}aRP@2;|&{T}xts@2;|&{T}Qxqs
@2;|&{T}x¤¦¦¦@3;|&{T}¥¦¦¦@3;

Å V|&{L}W@2;
|&{R}xmnsV@4;|&{R}zmnsV@4;|&{R}{mnsV@4;|&{R}|mnsV@4;|&{R}}mnsV@4;|&{R}\|mnsV
@5;|&{R1}|mnsVV@5;|&{R2}|mnsVV@5;
|&{R}|mnsW@5;|&{R}£mnsV@4;
|&{R1}LRi&V@5;|&{R2}LRi&V@5;|&{R1}Lji&V@5;|&{R2}Lji&V@5;|&{R1}Lki&V@5;|
&{R2}Lki&V@5;|&{R1}lLi&V@5;|&{R2}lLi&V@5;
|&{R1}lLi[&V@5;|&{R2}lLi[&V@5;|&{R1}\lLi&V@6;|&{R2}\lLi&V@6;|&{R1}lLi&VV@2
;|&{R2}lLi&VV@2;|&{R3}lLi&VV@2;
|&{R1}lLi&W@2;|&{R2}lLi&W@2;|&{R1}Lì&V@2;|&{R2}Lì&V@2;
|&{R}ª«sV@3;|&{R}zmsV@3;|&{R}{msV@3;|&{R}®ªsV@3;|&{R}®ªs[V@3;|&{R}®ªsVV
@2;|&{R}®ªsW@2;|&{R}ª±sV@2;
|&{R1} Ŗ¶V@2;|&{R2} Ŗ¶V@2;|&{R1}LiVV@2;|&{R2}LiVV@2;|&{R1}LiVW@2;
|&{R2}LiVW@2;
|&{R1}¹¸¶V@2;
|&{R2}¹¸¶V@2;|&{R1}¹¸¶[V@2;|&{R1}¹¸¶[V@2;|&{R1}\¹¸¶V@2;|&{R2}\¹¸¶V@2;
|&{R1}¹¸¶VV@2;|&{R2}¹¸¶VV@2;|&{R3}¹¸¶VV@2;|&{R1}¹¸¶W@2;|&{R2}¹¸¶W
@2;|&{R1} º̧¶V@2;|&{R2} º̧¶V@2;

 43

4 &{B}´R¶@2;|&{B}´y@2;|&{B} j́¶@2;|&{B}´k¶@2;|&{B}´R¶V@2;|&{B}´R¶W@2;
|&{B}®´¶@2;|&{B}®´¶[@2;|&{B}\®´¶@2;
|&{B}´]@2;|&{B}´][@2;|&{B}´_@2;|&{B}´̀¶@2;|&{B}µR¶@2;|&{B}µy@2
;|&{B}µj¶@2;|&{B}µk¶@2;|&{B}µR¶V@2;
|&{B}µR¶W@2;|&{B}®µ¶@2;|&{B}®µ¶[@2;|&{B}\®µ¶@2;|&{B}µ]@2;|&{B}µ][@2
;|&{B}µ_@2;|&{B}µ̀¶@2;|&{B}µ³R¶@2;
|&{B}µ³y@2;|&{B}µ³j¶@2;|&{B}µ³k¶@2;|&{B}µ³R¶V@2;|&{B}µ³R¶W@2;|&{B}®µ³¶@2
;|&{B}®µ³¶[@2;|&{B}\®µ³¶@2;|&{B}µ³]@2;
|&{B}µ³][@2;|&{B}µ³_@2;|&{B}µ³̀¶@2;

. &{D}´R¶@2; … and others that contain a dot at the bottom

ù < Ŗ¶V>

Table 11 Mnemonic based description of glyphs that appear in the example word.

The first step in the algorithm is to get rid of those mnemonics whose

companions don’t exist in their vicinity. (Part name B is used for Base, D for Dot,

T for Top, L for left, R1, R2, R3 for first, second and third Right parts and R for

Right)

Reduction of glyph “senses”: Each glyph shown in the first column can

potentially be used to form any of the logical units to its right. However, for a

given logical unit, not all constituent glyphs will be found in the vicinity. For

example although in general the RP can be a part of NRP, here it cannot be

because the glyph N does not exist near it.

Glyph Mnemonics to represent its various usages

¥ &{B}xxms@2;|&{B}xªsV@3;|&{B}ª«s@2;

A &{T}xxms@2;|&{T}ª«sV@3;|&{T}ª«s@2;

Å V|&{R}ª«sV@3;

4 &{B}µ³R¶@3;

L &{T}µ³R¶@3;

. &{D}µ³R¶@3;

ù < Ŗ¶V>

Table 12 Mnemonics whose companions exist within the example word

 44

Find all possible mnemonic sequences: Having reduced the number of

target logical units we can now form all possible words from these:-

&{B} xxmsxxmsxxmsxxms@2; &{T} xxmsxxmsxxmsxxms@2; V V V V &{B}µ³R¶µ³R¶µ³R¶µ³R¶@3; &{D}µ³R¶µ³R¶µ³R¶µ³R¶@3; &{T}µ³R¶µ³R¶µ³R¶µ³R¶@3; <¸R¶V¸R¶V¸R¶V¸R¶V>

&{B}xxms@2; &{T}xxms@2; &{R}ª«sV@3; &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}xxms@2; &{T}ª«sV@3; V &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}xxms@2; &{T}ª«sV@3; &{R}ª«sV@3; &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}xxms@2; &{T}ª«s@2; V &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}xxms@2; &{T}ª«s@2; &{R}ª«sV@3; &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}xªsV@3; &{T}xxms@2; V &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}xªsV@3; &{T}xxms@2; &{R}ª«sV@3; &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}xªsV@3; &{T}ª«sV@3; V &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B} xªsVxªsVxªsVxªsV@3; &{T}ª«sVª«sVª«sVª«sV@3; &{R}ª«sVª«sVª«sVª«sV@3; &{B}µ³R¶µ³R¶µ³R¶µ³R¶@3; &{D}µ³R¶µ³R¶µ³R¶µ³R¶@3; &{T}µ³R¶µ³R¶µ³R¶µ³R¶@3; < Ŗ¶VŖ¶VŖ¶VŖ¶V>

&{B}xªsV@3; &{T}ª«s@2; V &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}xªsV@3; &{T}ª«s@2; &{R}ª«sV@3; &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}ª«s@2; &{T}xxms@2; V &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}ª«s@2; &{T}xxms@2; &{R}ª«sV@3; &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}ª«s@2; &{T}ª«sV@3; V &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}ª«s@2; &{T}ª«sV@3; &{R}ª«sV@3; &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

&{B}ª«sª«sª«sª«s@2; &{T}ª«sª«sª«sª«s@2; V V V V &{B}µ³R¶µ³R¶µ³R¶µ³R¶@3; &{D}µ³R¶µ³R¶µ³R¶µ³R¶@3; &{T}µ³R¶µ³R¶µ³R¶µ³R¶@3; <¸R¶V¸R¶V¸R¶V¸R¶V>

&{B}ª«s@2; &{T}ª«s@2; &{R}ª«sV@3; &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V>

Combine mnemonics that form a logical unit: Each mnemonic sequence

is now taken and the mnemonics combined to form logical units. However except

for the entries shown in bold the mnemonic sequences do not contain all

constituent parts for the logical units. The program therefore selects only those

mnemonic sequences which have all the required mnemonics. This leaves us with

&{B}xªsV@3; &{T}ª«sV@3; &{R}ª«sV@3; &{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V> = ª«soµ³R¶ê

&{B}ª«s@2; &{T}ª«s@2; V&{B}µ³R¶@3; &{D}µ³R¶@3; &{T}µ³R¶@3; < Ŗ¶V> = xªsV µ³R¶ê

 45

Use dictionary to disambiguate: The dictionary is used next to select one

of these. It contains only the second alternative and hence the algorithm

successfully converts the glyph sequence xªsV µ³R¶ê to Unicode.

Use map table to disambiguate: Since no more ambiguity remains the use

of map table is unnecessary. The mappings obtained here are also added to the map

table so that they can be used later if disambiguation with dictionary does not work

with other words.

 46

3.2 MACHINE LEARNING APPROACH

3.2.1 Problems with the Previous Approach:

To describe the glyph grammar one needs not only the knowledge of the

script but also the nuances of the script. For example one should know that the

right part of E in Devanaagari can also be used to make the right parts of >, E, H

and ¡ then by looking at the font table, and optionally looking at the display one

has to decide on the possibilities allowed in that particular font. In Telugu like

scripts it is very difficult to write these grammars since different glyphs with same

shape will be provided and the origin metric determines where to place that glyph.

Since the origin metric value is not available to the user, it becomes difficult to

come up with perfect description.

3.2.2 Machine Learning Techniques

Here we explore the possibility of using machine learning methods for

automatic generation of font converters. We have pointed out in section 1.5 the

similarity of the problem of font conversion with that of Machine Translation. So

we first look at the existing machine learning techniques that are being used for

Machine Translation.

Statistical as well as non statistical machine learning techniques are being

used for building Machine Translation systems. Statistical techniques try to model

the translation problem using probability

P (target sentence | source sentence) = P(target sentence)*P(source

sentence | target sentence)

 47

according to the Bayes’ rule. The translation that gives the maximum

probability for the left hand side is chosen. The probabilities on the right are

estimated using different language models such as trigram models [34] or

probabilistic context free grammars [35]. Neural Networks as tools for building

machine translation systems have been explored, but no realistic systems have

been built using them [36]. Finite state translation models have been used in

limited domain translation to automatically generalize from a set of examples.

The problem with any statistical machine learning technique is, human

being can not ‘read/understand’ what the machine has learnt. So, in case machine

goes wrong, human being will not have ‘control’ over the system to fix the output.

At the same time, the statistical techniques require a huge parallel corpus for

training. In case of font converters, a parallel corpus is not readily available.

Non statistical machine learning techniques, on the other hand provide

solutions, which are human interpretable. This enables a human not only to

‘understand’ what machine has learnt, but also ‘modify’ what machine has learnt.

Transducer learning algorithms used by EUTRANS [37]and Brill’s rule based

tagger [38] are the best examples of non-statistical machine learning algorithms,

used in the area of Machine Translation and part of speech tagging respectively, in

NLP. Brill’s tagger uses a initial set of rules, and a training corpus, and learns

through a bootstrapping process. In case of font glyphs, the initial set of rules will

be font dependent, and hence this method can not be used for building font

converters.

The finite state transducer model, just requires a parallel corpus, and hence

seemed to be feasible. One of the advantages of using finite state transducers is that

they can be automatically learnt from examples. Moreover these transducers offer

a clear advantage over other statistical machine learning techniques, in that the

models that they depict are easily interpretable by humans. As a result they are

 48

potentially modifiable to suit one’s needs. Moreover domain knowledge about the

input or the output can be incorporated to improve their performance.

In the following sections, we describe a transducer learning algorithm, used

by EUTRANS. 3.2.5 Contains the terminology used in EUTRANS, the machine

translation system whose algorithms have been adapted for our problem. Section

 3.2.6 contains an example to illustrate the working of the original algorithm with

an example from glyph translation. In section 3.2.7 we point out that the original

algorithm needs to be modified to avoid the overgeneralization and suggest

modifications.

 49

3.2.3 Using Machine Learning Techniques for Generation of

Converters.

Of the different example based machine learning techniques, we used one

in which finite state transducers can be automatically learnt from examples. These

transducers can be considered as programs that change the input in some way to

give the output. Transducer learning algorithms have been used in the EUTRANS

project which aims at using example based approaches for the automatic

development of machine translation systems for limited domain applications and

have been shown to give a low word error rate.

The following example shows the transducer for translating Spanish

phrases to English built from 10 examples.

Figure 9 The finite state transducer learnt from 10 example phrases of Spanish to English

translation.

(trescientos, three oh oh),
(seiscientos, six oh oh),
(trescientos diez, three one oh),
(trescientos cincuenta, three five oh),
(trescientos cincuenta y uno, three five one),
(seiscientos cincuenta y siete, six five seven),
(seiscientos ochenta, six eight oh),
(seiscientos ochenta y cuatro, six eight four),
(seiscientos veintitres, six two three)

 50

3.2.4 Minimum Unit for Translation

In the font conversion problem, the input is the word in the font encoding

and output is the word in ISCII/Unicode encoding. However, if we take the

analogy of machine translation, a word in font glyphs is analogous to a sentence in

a language string, and a syllable in font glyphs is analogous to the word in a

language string. Secondly, we observe that the syllables are just concatenated to

form words, and their shape is independent of other syllables in the proximity.

Hence, the minimum unit of translation in font converters is a syllable, and not a

word.

 Therefore, in case of font converters training set consist of a parallel

corpus consisting of syllables as a sequence of glyphs and their translation into

ISCII. Further to reduce the burden of learning, the order of matra and the reph

sign (in case of Devanaagari script) are kept the same as that of font glyphs. Since

the rules for these transformations are deterministic one can recover this

information at a later stage also.

3.2.5 Definitions

A finite state transducer is composed of states and edges connecting those

states. Each edge has associated with it an input symbol and an output string. The

parsing of an input string begins from a distinguished state (the initial state) and

proceeds by consuming input symbols one by one. Every time an input symbol is

matched following an adequate edge, the symbol is consumed, the string associated

with that edge is output and a new state is reached. This process continues on until

the whole input is consumed; then, additional output may be produced from the

last state reached in the analysis of the input.

Subsequential finite state transducers are a special class of finite state

transducers that satisfy the determinism condition i.e. for a given input string there

is at most one valid path and therefore at most one translation

 51

Onward subsequential finite state transducers are a further

specialization of subsequential finite state transducers. In these, for each input

string prefix, the output string associated to it by the transducer is the longest

common prefix of the output strings corresponding to the input strings that begin

with this input prefix.

Figure 10 Block diagram of the system that is trained from examples:

In the next section we look at an example to understand the original

algorithm and the improvements due to the modification.

3.2.6 An Example to Illustrate the Original Algorithm

Suppose the following examples are given for training:-

Parallel list
of syllables

Make TST

TST

Make OTST

OTST

OSTIA

New Subsequential
State Transducer

New
Text Execute

Output

 52

Glyphs ISCII

M É µ
M É ä µ Ùá
O É µ Ùè Ï

M É Ò µ ÙÜ
M ¨ É µ Ùè Ì
M É É µ ÙÚ
¨ M É Ì Ùè µ

Table 13 Examples for training used by OSTIA

Stage 1: In the first stage a Subsequential Finite State Transducer (SST) is

created in which all outputs are in the final stage. There are no outputs on

intermediate states or edges.

Figure 11 Tree Subsequential Transducer built directly from examples using algorithm

MakeTST given in page 72. Final states have darker boundaries. ‘/’ is used to separate input

from output. ‘φφφφ‘ is the null string. λ λ λ λ is the empty string.

Whenever an input string is seen, the appropriate path on the Transducer is

taken and outputs (if any) on the edges are emitted. When the input string is

finished outputs (if any) on the current state then, is also emitted. If the current

state is not a final state, then the input string is said to be rejected. Consider e.g. the

input string MÉÉ converted using the transducer in Figure 6. The string consists of

two symbols ‘M’, ‘É’. When the first symbol is seen the edge from 0 to 1 is followed

and state 1 is reached. Since there is no output on the edge no output is given.

From state 1, on the next input symbol ‘É’ the edge from 1 to 4 is taken and again

no output is given. Note that since the input string has not yet finished the output

0/λ
5/µ

7/φ

4/µ

2/φ

1/φ

3/φ 12/ÌÙèµ

10/µ

11/µ ÙÚ

9/µÙÜ
M/ λ

M / λ

É / λ

É / λ

¨ / λ

ä / λ

Ò/ λ

É / λ

É / λ O / λ

8/µ Ùá

6/φ

É / λ

 53

on state 4 is not emitted. Finally on ‘É’ the edge from 4 to 11 is followed. The input

string has finished. Therefore the output on 11 i.e. µ ÙÚ is given.

Stage 2: In the second stage output strings are pulled towards the start state

as much as possible. The SST now becomes Onward Tree Subsequential

Transducer (OTST) as is shown in the following figure.

Figure 12 Onward Tree Subsequential Transducer built from Tree Subsequential Transducer

using algorithm MakeOTST given in Appendix. The longest common prefixes of the output

strings have been moved level by level from the final states towards the root. The transducer

translates all and only the examples given in input and no other.

Stage 3: States are now merged one after another. The only property that

these states must verify is that all paths departing from them which share the same

sequence of input symbols must also share the same sequence of output strings

In order to generalize from the set of examples, the system now starts

merging states, trying first to merge 1 into 0. However 0 and 1 have outgoing arcs

with the same input symbol (¨) but different output symbols (ÌÙèµ and ÙèÌ). More

merging may be required in order to keep the Transducer deterministic, i.e. only

one outgoing arc from a state for a given input symbol. See Figure 13.

0/λ
5/λ

7/φ

4/λ

2/φ

1/φ

3/φ 12/λ

10/ λ

11/ λ

9/ λ
M/ µ

M / λ

É / λ

¨ / ÙèÌ

É / λ

¨ / Ì Ùè µ

ä / Ùá

Ò/ ÙÜ

É / ÙÚ

É / λ O / µ

8/ λ

6/φ

É

 54

Figure 13 State 1 is being merged into state 0.

The longest common prefix of the two strings ÌÙèµ and ÙèÌ (which is the

empty string in this case) is retained on the arc and the remaining is pushed back

on the outer edges. The result can be seen in Figure 14.

Figure 14 State 1 is being merged into state 0. To make the arcs with the same input symbol,

have the same output strings the longest common prefix of the output string is retained and

the rest is pushed back. To keep the Transducer deterministic, i.e. only one outgoing arc with

a given input symbol, states 3 and 6 also will be merged.

Before finally merging 1 into 0, states 3 and 6 are tried for merging in order

to make a single outgoing arc with ¨. Since they do not have outgoing arcs with

common input symbols they can be merged without pushing back of parts of

output strings. The final transducer after merging 0 and 1 (and also 3 and 6) is

shown in Figure 15.

0/λ
5/λ

7/φ

4/λ

2/φ

1/φ

3/φ 12/λ

10/ λ

11/ λ

9/ λ

M/ µ

M / λ

É / λ

¨ / ÙèÌ

É / λ

¨ / Ì Ùè µ

ä / Ùá

Ò/ Ù

É / ÙÚ

É / λ O / µ ÙèÏ

8/ λ

6/φ

É / λ

0/λ
5/λ

7/φ

4/λ

2/φ

3/φ 12/λ

10/ λ

11/ λ

9/ λ

M/ µ

M / Ì Ùè µ

É / λ

¨ / λ

É / λ

¨ / λ

ä / Ùá

Ò/ ÙÜ

É / ÙÚ

É / ÙèÌ
O / µ ÙèÏ

8/ λ

6/φ

É / λ

 55

Figure 15 The merging of 0 and 1 is now complete, as a result of merging of 6 into 3. The

transducer still converts the examples correctly. However, it has now learnt (incorrectly) how

to convert the glyph M into the ISCII code for µ. µ. µ. µ. It should have learnt the ISCII code for µµµµ ÙÙÙÙè.è.è.è.

As can be seen overgeneralization from examples has taken place. We will

see later how to stop this by putting more conditions on when two states can be

merged. Merging doesn’t stop here and it continues until the following is obtained.

Figure 16 The final transducer obtained as a result of merging all possible states. Looking

only at the arcs we see that overgeneralization has taken place, even though the examples are

still converted correctly

Given below are some new and incorrect conversions that the transducer in

Figure 16 does:-

0/λ

3/λ

4/λ

M/µ,
O/µÙèÏ

É / λ

¨ / λ

M/ÌÙèµ,

ä/Ùá, Ò/ÙÜ,

0/λ
7/φ

4/λ

12/λ

10/ λ 11/ λ

9/ λ

M/ µ

M / Ì Ùè µ

¨ / λ

É / λ

ä / Ùá

Ò/ ÙÜ

É / ÙÚ É / ÙèÌ

8/ λ

3/φ

É / λ

5/λ 2/φ
É O / µ

 56

Glyphs ISCII

M µ
O µ Ùè Ï

¨ M Ì Ùè µ
¨ É Ùè Ì

Table 14 Examples of incorrect translations done with the original algorithm

3.2.7 Modification in the Original Algorithm to Prevent

Overgeneralization.

If we look at Figure 12 in the previous section, which shows the transducer

before 1 was merged into 0, we find that 1 is a non final state and as such the

transducer converts M into µ only when it is followed by a É. This behavior is

correct. The problem arose in Figure 15 because by merging 1 into 0, we made a

non final state into a final one. We therefore make a small change to the algorithm

so that it doesn’t try to merge final states with non final ones. Therefore the

condition changes from:-

/* If first state is not final or second state is not final or both have the same

output */

If σ'(r) = φ or σ'(s) = φ or σ'(r) = σ'(s) then

…

To :-

/* If first state is final and second state is final and both have the same

output */

If σ'(r) ≠ φ or σ'(s) ≠ φ or σ'(r) = σ'(s) then

…

When this change is made to the Merge_States algorithm the following

transducer results from the same set of examples:-

 57

Figure 17 The final transducer obtained as a result of merging all possible "final" states. The

algorithm has correctly learnt vowel signs as can be seen from the arc from state 0 to itself

The transducer can now correctly convert vowel signs. Since vowel signs

combine with other characters to form new syllables, this learning becomes

important.

0/λ

7/λ

3/λ

6/λ

2/λ

1/λ

ä/Ùá,
Ò/ÙÜ
É/ÙÚ

É / λ

É / λ
É / λ

O/µÙè

M/µ

¨ / Ì Ùè µ

É / λ

¨/

M/µ

 58

CHAPTER 4

URDU – HINDI ACCESSOR

4.1 INTRODUCTION

Urdu, as is well known, is one of the official languages in India and has the

official language status in the states of Andhra Pradesh and Jammu Kashmir. Its

use with Hindi in the spoken form is common in the northern regions of the

country and the two languages together are referred to as Hindustani [39].

Rather than saying that Urdu and Hindi are two different languages, they

are indeed two different ways of using the same language. Masica [40] points out

that they are not even two dialects: they are exactly the same dialect used by two

different communities. It is well known that Premchand wrote his stories in Urdu

script and got them transcribed into Devanaagari. With the help of this software,

now one can access the original Urdu text, without any distortions The

differentiation of languages in the mind of public is influenced regrettably by

politics and prejudice. Hindi and Urdu together as Hindustani, collectively form

the third most populous language (after Chinese and English) in the world.

However the use of two different scripts viz Perso-Arabic for Urdu and

Devanaagari for Hindi has divided the world of Hindustani into two.

With the advent of technology however, now it is possible to bridge the gap

between two scripts. There have been attempts to develop transliteration schemes

 59

(e.g. by GIST group at CDAC and at Columbia University) to access Urdu text

through Devanaagari. However Urdu characters that didn’t have equivalents in

Devanaagari were mapped to the closest Devanaagari alternative. We feel that it is

instead necessary to extend the Devanaagari script further to account for special

Arabic characters used in Urdu.

Thus we see that it is not an easy task to transliterate an Urdu text into

Hindi or vice versa. In what follows, we suggest solution to overcome these

differences, and also further steps to reduce the gap between Urdu and Hindi,

enabling a Hindi person not knowing Arabic script to access Urdu text through

Devanaagari.

4.2 BUILDING A URDU-HINDI ACCESSOR

Figure 18 Stages in translation of an Urdu text to Devanaagari

The overall structure of the accessor is shown in Figure 18.

Step 1. Transliteration to Devanaagari

Transliteration to Devanaagari requires a mapping from the Urdu alphabet

to the Devanaagari alphabet. However not all characters of the Urdu alphabet have

equivalents in Devanaagari. For example The following ظ ض ژ ز ذ ج are variants of

Convert to
Enhanced
Devanaagari
Script

Combine
unaspirated
consonants
that appear
with ha to
aspirated
equivalents

Use
dictionary to
add vowel
signs

Do Local
word
grouping.

Hindi Text

Urdu Text

 60

the ja sound and without an Enhanced Devanaagari script will have to be mapped

to the single character ज.

The distinction between different ja’s is critical since different ja’s may

give rise to different meanings. In case all the ja’s are transliterated to single ja in

Devanaagari there will be loss of information, may be leading to catastrophe in

understanding. Here are some examples.

Variant

of Ja

Devanaagari

Unicode

Equivalent

Sample

Urdu Word

Meaning Nearest

Devanaagari

Equivalent of

Sample Urdu

Word
 भूल चूक زّ�� ز
 अपमान ذّ�� ذ
 भटक जाना 	ّ�� ض

िज�लत

 कट करनाू ا��ر ظ
े जोर स ا��ر ج

 बोलना
 ز

ज

 दीपक जलाना ازه�ر

इजहार

Table 15 Mapping of multiple “ja” sounds of urdu to a single “ja” sound in Devanaagari

As a result where Devanaagari is used to write Urdu (e.g. Urdu Hindi

dictionaries) an Enhanced Devanaagari Script is used. Different variants of the

script are in use. We use the one from [41] which is also given in the appendix
‡

Since most Devanaagari fonts do not contain the new glyphs in the

Enhanced Devanaagari Script, we developed a new font to include the additional

required glyphs [42]. A filter now maps Urdu characters to enhanced Devanaagari

characters.

Step 2. Urdu uses ‘ha’ to convert a non aspirated consonant into an

aspirated one. Devanaagari has special symbols for the non aspirated and aspirated

‡ Unicode has many more characters than are given in 41. Prof. Rahmat Ysuf Zai former head, Dept
of Urdu, University of Hyderabad helped us in mapping most (if not all) of them.

 61

ones. A filter is required to convert non aspirated consonants followed by ‘ha’ to

their nearest aspirated equivalents as shown below:-

‚ã ƒæ
ˆã Í
Œã È
‘ã À
… …

Table 16 Filter to convert non aspirated consonants with ‘ha’ to aspirated

Step 3: The Arabic alphabet is an abjadi (impure). Short vowels are not

written, though the long ones are. Urdu, whose script is derived from Arabic,

doesn’t use vowels or vowel signs in the script. The reader has to determine the

presence of vowels from the context. For transliteration to Devanaagari to look

natural these vowel signs have to be inserted. Usually there is only one vowel sign

that can go in any particular position. A dictionary stores the mappings from Urdu

without vowel signs to Devanaagari with vowel signs. There may be more than one

possibilities corresponding to a given sequence of consonants. The machine just

does a dictionary search and displays all possible combinations.
§
 It may be noted

that since Urdu often leaves out vowels, even an Urdu native finds it difficult to

“guess” the word unless a context is clear.**

Some examples of the dictionary entries are:-

§ The dictionary which contains about 1500 such mappings also stores word meanings and is slowly
growing. The initial set of word meanings was provided by Prof. M.S. Hayat, Director, Distance
Education, University of Hyderabad.
** Even the translations of Premchand's literature by Oxford University Press have mistakes
wherein the characters in the novel have been misspelled. e.g. Suman as saman, umanath as
omanath, balbhadra as balbhadar.

 62

 यादगार �	د
	ر

ڑگ गुड़
 इस اس

 उस اس

Table 17 Words without vowel signs in Urdu are translated to words with vowel signs

.

Step 4. Some of the Urdu words are written as two words whereas Hindi

writes them as a single. It is necessary that multiple consecutive words that have

single equivalents in Hindi be combined. Some such examples are shown below:-

¹éÎ ·éàæ¤è ¹éÎ·éàæ¤è
ã×Üæ ßÚ ã×ÜæßÚ

Table 18 Local word grouping to combine multiple Urdu words into a single Hindi word.

4.3 SAMPLE OUTPUT

The following screenshots show the sample input taken from a Urdu News article on BBC and its
conversion to the enhanced Devanaagari script.

Figure 19 Sample Urdu text taken from the BBC Urdu Website

 63

Figure 20 Output of the sample text shown above

The following screenshot shows the step by step conversion from the Urdu

to the Enhanced Devanaagari Script (EDS). The first row in each set shows the

original Urdu text encoded in Unicode. The last row in each set shows the final

Enhanced Devanaagari Script output. The other rows show the intermediate output

of conversion. The user interface allows the user to Show/Hide specific rows.

Figure 21 Screenshot of the output of the Urdu-Hindi Anusaaraka in a web browser

 64

The second row contains a character to character conversion from Urdu to

EDS. Although not natural but this is still readable. This corresponds to the Step 1

in the conversion process, i.e. Transliteration to Devanaagari.

The third row contains the output after conversion of unaspirated

consonants to aspirated ones. See for example the third word from the end where

सम'हा is converted to समझा. This is Step 2 of the conversion process.

The fourth row contains the output after insertion of vowel signs or

conversion of consonants such as व य to vowel signs. अवर is converted to और,

अकबाल to इकबाल and so on. These conversions are done using the dictionary that

stores these mappings. The conversion from असलाम to इसलाम could also have

been done if the dictionary contained such an entry.

The last row shows the result of local word grouping. The local word

grouper in this case has combined the words खदु and कुशी into a single word

खदुकुशी. Again an addition of another entry that converts the words हमला and वर

to हमलावर would have allowed the program to combine the two into one.

The display of output in stages not only allows the interested user to

understand how the output was arrived at but also aids the user or developers to

understand why an incorrect output was obtained (if any).

It is important to note that the output is not limited to what we have

obtained. The Anusaaraka interface allows one to add more intermediate stages for

the purpose of understanding the conversion. More layers can be added between

any of the stages mentioned earlier.

 65

4.4 FUTURE WORK

We have thus been able to arrive at a simple system to access Urdu texts

through Extended Devanaagari. The only requirement for a full fledged translation

from Urdu to Hindi is that of a good coverage dictionary in the electronic format.

 66

CHAPTER 5

RESULTS

5.1 GLYPH GRAMMAR BASED APPROACH

Major chunk of time when using this algorithm is spent in writing down the

glyph description table. For scripts such as Devanaagari and Bengali, where a

glyph can belong to relatively few logical units, this time is about 2 hours. Once a

first draft of the glyph description table is ready it can be given to the program as

input along with the text to convert. Often users cannot identify all possible uses

for a glyph and such usage is known only when the program leaves some words

unconverted. The glyph description table needs to be updated iteratively with the

usages not foreseen earlier. Fortunately most of this work can be reused for new

fonts of the same script. If the basic glyphs used by the two fonts are same, one

merely has to reassign the mnemonic based description to new glyph codes.

Devanaagari: Conversion of over 90% can be obtained after a period of

nearly two hours. For the remaining 10% one has to update the font glyph

description table. The results were obtained on the jagran, kruti and shusha fonts

for Devanaagari.

Telugu: Tests on the eenadu and vaartha [43] font give more than 75%

conversion on valid input. The unconverted words can be categorized as follows:-

4% unconverted (updates required to the font glyph description table)

 67

2% too many mnemonic sequences to process. Such cases arise because the

number of target logical units for a glyph is too many even after removal of those

senses for which companion glyphs are not found nearby.

18% ambiguous, which could not be disambiguated by either the dictionary

or the map table.

Devanaagari

(jagran/kruti/shusha)

90%

Telugu (eenadu/vaartha) 75%

Figure 22 Results of the grammar based approach in Devanaagari and Telugu

5.1.1 Drawbacks of the Glyph Grammar Based Approach

a) It is difficult to list all possible semantics for a glyph. It becomes

necessary to revise the glyph description table with more senses for the glyphs if a

word is not converted completely.

b) Some training in understanding the notation (and the nature of script) is

required to be able to describe new glyphs.

5.1.2 Possible Improvements

There is currently no support for the user to disambiguate. Such a

mechanism will not only disambiguate the word which the user disambiguates but

also all other words that are ambiguous because of the same glyphs.

The mappings found are used only at the time of conversion. The program

outputs these mappings but there is no support for using these mappings for new

conversions.

 68

5.2 THE MACHINE LEARNING APPROACH

The input to the transducer is a parallel list of syllables encoded in the font

encoding and the target encoding (ISCII/Unicode). Syllables and not words are

required since the performance is higher with syllables. A sample text was taken

and 1000 syllables extracted from it. The Unicode equivalents for these syllables

were then given. These syllable mappings were given to OSTIA for learning new

mappings. The results for Devanaagari and Telugu are shown in the following

table:-

Telugu (eenadu/vaartha) 93%

Devanaagari (jagran/kruti/shusha) 98%

Table 19 Conversion of texts when 1000 syllables from a representative sample text are taken

It must be noted that these 1000 syllables used as such for conversion can

convert only 75% of text. With new mappings learnt from OSTIA an additional

15% of conversion can be obtained.

The following graph shows the effect of increasing the number of syllables

given as input to OSTIA when syllable mappings were obtained for Eenadu to

ISCII conversion.

 69

Percentage conversion wrt number of syllables of
Eenadu font encoded text

0

10

20

30

40

50

60

70

80

90

100

1
6
7

3
3
3

4
7
2

5
7
8

6
1
7

6
4
6

6
8
9

7
4
0

7
8
1

8
2
8

8
3
8

9
0
0

Number of syllables

P
er

ce
nt

ag
e

co
nv

er
si

on

Figure 23 Increase in the percentage conversion on new text with increasing number of

syllables.

5.2.1 Drawbacks

One drawback of finite state transducers is that they cannot learn glyph

movement. Glyph movement sometimes occurs when the visual position of a glyph

is different from the logical position of the character/syllable which it is a part of.

One way in which this can be addressed is by moving the characters so that their

position coincides with the visual position of their constituent glyphs. Consider the

f vowel sign for example. Its logical position is after the consonants but visually it

appears before.

Secondly, the examples required for training must be units smaller than

whole words. As seen above we had given syllables for training. Although syllable

splitting can be automated to some extent, manual splitting is done to minimize

errors in examples used for training.

 70

5.2.2 Possible Improvements

Incorporation of domain and range information in the tools: The learning

algorithm can incorporate domain and range information, if available. The tool

being used doesn’t provide this. This information if incorporated is likely to

improve accuracy of conversion.

5.3 RESOURCE REQUIREMENTS WITH DIFFERENT

APPROACHES

Depending upon the platform, time availability, font availability etc. either

of the two approaches could be used. The following table gives a comparison of

the two in terms of these factors.

Approach Operating

System/

Platform

Time required

for over 90%

conversion

Training Font

Glyph

Grammar

Based

Java 2 hrs
(Devanaagari)

Yes (
about 2 hrs
or more)

No. A
print out
of glyph
table
sufficient.

Machine

Learning
C++ 8 hrs (Telugu

/
Devanaagari)

Negligible Must be
installed
for
splitting to
be done
manually.

Table 20 Platform, time, training etc. required for font conversion with different approaches

Although the conversion of 90% of font encoded text is less than ideal, it is

sufficient to make the output text readable. Moreover a user with little or no

programming background can make use of these tools and improve the accuracy

with a little more effort when he/she is using the first approach. We have thus been

 71

able to provide a mechanism with which almost any Brahmi based script’s font

encoded text can be reasonably converted.

One has to now take these tools and help build a repository of font glyph

description tables for new fonts of new scripts. This will not only allow conversion

of new fonts but also help in improving the tools.

 72

APPENDIX A

 URDU-ARABIC-PERSIAN DEVANAAGARI ALPHABET

Unicode

Code

Point

Unicode

Character

Enhanced

Devanaagari

Equivalent

Unicode

Code

Point

Unicode

Character

Enhanced

Devanaagari

Equivalent

 ज ذ अ 0630 إ 0625

 र ر ब 0631 ب 0628

067E پ प 0691
 ड़ ڑ

062A ت त 0632 ز ज़

0679
 ज ژ ट 0698 ٹ

062B س 0633 � ث स

062C ج ज 0634 ش श

 � ص च 0635 چ 0686

062D ض 0636 � ح �

062E خ ख़ 0637 ط �

062F د द 0638 ظ ज

 73

0688
 न ن ड 0646 ڈ

 � ع ज 0639 ذ 0630

 ग़ غ र 063A ر 0631

0691
 फ़ ف ड़ 0641 ڑ

 क ق ज़ 0642 ز 0632

 क़ ك ज 0643 ژ 0698

 ग گ स 06AF س 0633

 ल ل श 0644 ش 0634

 म م 0645 � ص 0635

 न ن 0646 � ض 0636

 व و 0648 � ط 0637

 ज 0647 $ ह ظ 0638

 य ى 0649 � ع 0639

063A غ ग़ 064A ي य

 फ़ 06D2 ' य़ ف 0641

 त ة क 0629 ق 0642

 क़ ك 0643

06AF گ ग

 ल ل 0644

 म م 0645

 74

APPENDIX B

CONTEXT FREE GRAMMAR FOR GLYPH DESCRIPTION TABLE

Following is the context free grammar for the glyph description table used in the

glyph grammar based approach (See 3.1). Details about such grammars and their

processing using the Java programming language can be found in [44]

glyph_code_to_senses_map

 -> glyph_code_to_senses_map glyph_description NEWLINE

 | glyph_description NEWLINE

 | NEWLINE

 | glyph_description error NEWLINE

 ;

glyph_description

 -> CODE COLON senses

 | CODE COLON

 ;

senses

 -> senses OR similar_senses

 | similar_senses

 ;

similar_senses

 -> similar_senses part

 | part

 ;

part

 -> char_sequence

 | mnemonics

 | CODE

 ;

mnemonics

 -> AMPERSAND LEFT_CURLY_BRACKET char_sequence

RIGHT_CURLY_BRACKET strings:set AT DIGIT SEMICOLON

 ;

strings

 -> strings substring

 75

 | substring

 ;

substring

 -> char_class

 | char_sequence

 ;

char_class

 -> LEFT_SQUARE_BRACKET comma_separated_values

RIGHT_SQUARE_BRACKET

 ;

comma_separated_values

 -> comma_separated_values COMMA char_sequence

 | char_sequence

 |

;

char_sequence

 -> char_sequence CHAR

 | char_sequence DIGIT

 | CHAR

 | DIGIT

 ;

 76

APPENDIX C

PUBLICATIONS/PRESENTATIONS

[1] Himanshu Garg, “Automatic Generation of Font Converters for Brahmi

based Indian Scripts”, The Linguistic Society of India Platinum Jubilee

Conference, Hyderabad India 2005

[2] Presented the Urdu-Anusaaraka system at Kendriya Hindi Sansthan

during the Rashtriya Sangoshthi on Feb 11 2004

 77

BIBLIOGRAPHY

 [1] Daniel Jurafsky and James H. Martin. “Speech and Language Processing”, Prentice

Hall, 2000

 [2] Ide, N. “Encoding Linguistic Corpora”, In Proceedings of the Sixth Workshop on Very

Large Corpora, 1998, pp. 9--17

 [3] Squeak: Squeak, http://www.squeak.org

 [4] C. V. Jawahar, Million Mesha and A. Balasubramanian, “Searching in Document

Images”, In Proceedings of the Indian Conference on Vision, Graphics and Image Processing

(ICVGIP), Dec. 2004, Calcutta, India, pp. 622--627

 [5] MNSSK Pavan Kumar, S. S. Ravikiran, Abhishek Nayani, C. V. Jawahar and P.J.

Narayanan, “Tools for Developing OCRs for Indian Scripts”, Proceedings of the Workshop on

Document Image Analysis and Retrieval, June 2003, Madison,

 [6] Bharati, Akshar, Amba P Kulkarni, Vineet Chaitanya and Rajeev Sangal, “अनुवाद के

उपकरण संगणक तथा भाषाएं” (Tools of Translation: Computer and Languages),

University of Hyderabad, Distance Education Programme, Hyderabad, India, Feb 1998.

 [7] Indian Script Code for Information Interchange – ISCII, UDC 681.3, Bureau of Indian

Standards, New Delhi, India, 1991

 [8] Holmes, N. “The problem with Unicode,” Computer Volume 36, Issue 6, pp. 116,

114 – 115, June 2003

 [9] Holmes,N. “Toward decent text encoding,” Computer Volume 31, Issue 8, pp. 108 –

109, August 1998

 [10] Mudawwar, M.F. “Multicode: a truly multilingual approach to text encoding,”

Computer Volume 30, Issue 4, pp. 37 – 43, April 1997

 [11] “ISFOC Standard for Fonts,” http://www.cdac.in/html/gist/standard/isfoc.asp

 [12] “ILeap – Indian Language Word processor”,

http://www.cdac.in/html/gist/products/ileap.asp

 [13] Linux Technology Development for Indian Languages,

http://www.cse.iitk.ac.in/users/isciig/

 [14] Tom Mitchell, “Machine learning”, Mc Graw Hill, 1997

 78

 [15] Microsoft Typography – Features of TrueType and OpenType,

http://www.microsoft.com/typography/SpecificationsOverview.mspx

 [16] Can legacy encoded Khmer text be converted to Khmer Unicode ?

http://www.bauhahnm.clara.net/Khmer/Welcome.html#LEGACYTOUNICODE

 [17] STED – SARA Transliterator and Editor, http://sted.sourceforge.net

 [18] SILConverters 2.1

http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=EncCnvtrs

 [19] International Components for Unicode, http://www-

306.ibm.com/software/globalization/icu/index.jsp

 [20] Brian W. Kernighan and Dennis M. Ritchie, “The C Programming Language”, 2nd

ed. Prentice Hall Inc., 1988.

 [21] Bjarne Stroustrup “The C++ Programming Language”, 3rd ed. Addison-Wesley,

1997

 [22] Arnold, K., and Gosling, J. “The Java Programming Language”, 2nd ed. Addison-

Wesley, Reading, MA, USA, 1998

 [23] Jonathan Kew, “Beyond UTF22: complex legacy-to-Unicode mappings,” In 22
nd

International Unicode Conference, September 2002, San Jose, California

 [24] Steven Johnson C., "Yacc: Yet Another Compiler Compiler", {UNIX}

Programmer's Manual, Volume 2, Holt, Rinehart, and Winston, New York, NY, USA pp. 353 -

387, 1979

 [25] padma, http://padma.mozdev.org/

 [26] Font Converters, http://ltrc.iiit.ac.in/showfile.php?filename=downloads/FC-

1.0/fc.html

 [27] Bharati, Akshar, Nisha Sangal, Vineet Chaitanya, Amba P. Kulkarni, and Rajeev

Sangal, “Generating Converters between Fonts Semi-automatically”, In Proceedings of SAARC

conference on Multi-lingual and Multi-media Information Technology, September 1998, CDAC,

Pune, India

 [28] Himanshu Garg, “Generating converters between fonts semi-automatically,” B.Tech.

Thesis, 2002, IIIT, Hyderabad, India

 [29] THE 'PLAIN ROMAN’ TRANSLITERATION SYSTEM,

http://www.columbia.edu/itc/mealac/pritchett/00ghalib/about/txt_translit.html?

 [30] CDAC: GIST - Products – Nashir

http://www.cdacindia.com/html/gist/products/nashir.asp

 [31] Hindi to Urdu Transliterator http://www.crulp.org/h2utransliterator.html

 [32] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, “Compilers: Principles, Techniques,

and Tools”

Addison-Wesley Pub Co. 1986

 79

 [33] Hudson, S. E., Flannery, F., Ananian, C. S., Wang, D., Appel, A. W., “CUP Parser

Generator for Java,” http://www.cs.princeton.edu/ ~appel/modern/java/CUP/

 [34] Peter F. Brown, Jennifer C. Lai, and Robert L. Mercer, “Aligning Sentences in

Parallel Corpora,” In Proceedings of the 29
th

 Annual Meeting of the Association for Computational

Linguistics, 1991, University of California, Berkeley, CA, pp. 169-176,

 [35] Barnett J., Cant J., Demedts A., Dietzel T., Gates B., Hays E., Ito Y., and Yamron J.,

“LINGSTAT: State of the System,” In ARPA Workshop on Machine Translation, November 1994,

Vienna, Virginia,.

 [36] Bonnie Dorr, Pamela Jordan, and John Benoit. "A Survey of Current Research in

Machine Translation," Advances in Computers, Volume 49, M. Zelkowitz (Ed), Academic Press,

London, pp. 1-68, 1999

 [37] Amengual J.C., Benedi J.M., Casacuberta F., Castano A., Castellanos A., Jimenez

V.M., Llorens D., Marzal A., Pastor M., Prat F., Vidal E., Vilar J.M, “EUTRANS-I Speech

Translation System, The,” Machine Translation, Volume 15, pp. 75-103, 2000

 [38] Eric Brill, “Some Advances in Transformation Based Part of Speech Tagging,” In

Proceedings of the Twelfth National Conference on Artificial Intelligence, 1994

 [39] Urdu Language, http://en.wikipedia.org/wiki/Urdu_language

 [40] Masica, Colin P., “The Indo-Aryan Languages,” Cambridge University Press, 1991

 [41] “Urdu Hindi Bhuvat”, Bhuvanvaani Trust, Lucknow

 [42] FontForge: An outline font editor for creating/editing fonts,

http://fontforge.sourceforge.net/

 [43] http://www.vaarttha.com/font/vaartha.ttf

 [44] Andrew, Appel W., “Modern Compiler Implementation in Java” Cambridge

University Press, 1998

